
The Magazine for IT Security

October, 2009

w
w

w.
se

cu
rit

ya
ct

s.
co

m
		

fre

e
di

gi
ta

l v
er

si
on

	 	
m

ad
e

in
 G

er
m

an
y

1

© iStockphoto/hjalmeida

Application Security

©
 iS

to
ck

ph
ot

o.
co

m
/a

bu

Co-Founder of ISSECO (International Secure Software Engineering Council)

www.diazhilterscheid.com

How high do you value your and your customers’ data? Do your
applications reflect this value accordingly? Accidental or deliberate
manipulation of Data is something you can be protected against.

Talk to us about securing your Systems. We will assist you to incor-
porate security issues in your IT development, starting with your
system goals, the processes in your firm or professional training
for your staff.

as@diazhilterscheid.com

3www.securityacts.comNo 1 October 2009

Editorial

Dear readers,

Security Acts is the challenge of producing a high-quality magazine for profes-
sionals in IT Security, which is made by and issued for the people involved in IT
Security. This online magazine is free of charge and will finance itself through
adverts.

The challenge of such an adventure is to find the right authors with the right sub-
jects, the right readers and - last but not least - a supporting community.

Our editorial board include Prof. Dr. Sachar Paulus, Aaron Cohen, Manu Cohen
and Markus Schumacher, as well as our chief advisor Stephan Goericke, who will
support strongly the right development of the magazine.

We hope to get the support of the global IT Security community and ask them
to subscribe to the magazine and to make the magazine’s link known to their
contacts.

The magazine is planned to be issued 4 times a year and there will only be an
online version.

We are open to all authors around the world. If you have a good subject in the
field of IT Security, please don’t hesitate to contact the editorial staff.

Please also contact us if you have any further questions or just to give us some
hints.

I want to thank all the authors and sponsors of the magazine. Without their help
we could not have produced this first issue.

Yours sincerely

José Manuel Díaz Delgado

4 www.securityacts.com No 1 October 2009

Contents
Editorial...3

AJAX makes applications more difficult to secure...5
by Manu Cohen

An Overview of Software Supply Chain Integrity..6
by Paul Kurtz

The Science of Secure Software ..9
by Prof. Dr. Sachar Paulus

Practical Application Security... 10
by Manu Cohen

International Secure Software Engineering Council (ISSECO)... 14
by Petra Barzin

The Liability of Software Producers and Testers... 16
by Julia Hilterscheid

The Human Face of Security - #1... 18
by Mike Murray

Software Supply Chain Integrity in SAP Applications.. 20
by Sebastian Schinzel, Gunter Bitz, Andreas Wiegenstein,
Markus Schumacher & Frederik Weidemann

Business Logic Security Testing and Fraud... 22
by James Christie

A Risk-Based Approach to Improving Software Security.. 28
by Rex Black

Demystifying Web Application Security Landscape.. 32
by Mandeep Khera

Security Testing by Methodology: the OSSTMM.. 35
by Simon Wepfer & Pete Herzog

Application Security Fundamentals... 37
by Joel Scambray

How to conduct basic information security audits?.. 42
by Nadica Hrgarek

Masthead..47

Index Of Advertisers...47

5www.securityacts.comNo 1 October 2009

Column

AJAX makes applications more difficult to secure

AJAX is the new hot technology concerning web applications. It allows
the client to do much more than before and have a much better user
experience.

AJAX is based on XmlHttpRequests that the browser creates while the
page is being presented on the browser. The client is not aware that so
many requests are being sent in the background. Ajax is a Java script
technology running mostly on the client side, and on the server side
the following question arises: Will the average AJAX-enabled web-
application be able to tell the difference between a real and a faked
XmlHttpRequest?

The answer is NO. AJAX is a client side technology and as we all know
the client side should not be trusted. Any web app should behave this
way, but here the request is done by a script which can be injected.

We all know how difficult it is to provide application security for tra-
ditional server applications. For AJAX it is double the effort. The main
problem is that with AJAX the user in unaware of the many AJAX re-
quests executed in the background. With a simple AJAX script injection
a “virus” can be created or other unwanted behavior concerning the
power of other servers on the web can be injected to the site.

AJAX is advancing rapidly and new frameworks are introduced fre-
quently. Microsoft releases its new AJAX framework with .Net 4.0 and
it promises to provide an answer for security issues. For the time being,
there is no simple solution.

When using AJAX an intensive validation effort must be done, other-
wise there will be no choice to make a decision between security versus
user experience.

Proper design allows AJAX to be used in a sandbox. This means that
less sensitive areas of the application can enjoy AJAX, but an “AJAX
Firewall” is built around the sensitive business logic and information.
For example, there will be no AJAX-enabled web service that exposes
sensitive information.

If you need to implement some AJAX, remember that AJAX enables
new XSS capabilities and therefore server validation must be much
more strict. Not only the body of the http packet must be validated, but
all of its headers. Never trust a third party. AJAX applications fetch

information from various untrusted sources such as feeds, blogs, search
results. If this content is never validated prior to being served to the end
browser, it can lead to dangerous cross-site exploitation.

With AJAX, much of the logic shifts to the client-side.

This may expose the entire application to some serious security
threats.

The urge for data integration from multiple parties and untrusted sources
can increase the overall risk factor as well: XSS, XSRF, cross-domain
issues and serialization on the client side, and insecure web services,
XML-RPC and REST access on the server side (This is true for any
WS). Conversely, Ajax can be used to build graceful applications with
seamless data integration.

However, one insecure call or information stream can backfire and end
up opening up an exploitable security hole.

These new technology vectors are promising and exciting for many, but
even more so for attack, virus and worm writers.

To stay secure, first answer the question: Is AJAX really needed? Sec-
ondly, make sure it lives in a sandbox, and thirdly make sure your de-
velopers are paying the nessesary attention to implementation details
and take security into consideration.

To summarize: Protecting an application is difficult. This is one of the
reasons why so many applications are unsecured. With AJAX it is even
harder. Before using AJAX ask yourself: are you ready for the security
challenges?

For more information:

http://www.owasp.org/index.php/Testing_for_AJAX_Vulnerabilities_
(OWASP-AJ-001)

http://www.net-security.org/article.php?id=956

http://www.darknet.org.uk/2006/04/ajax-is-your-application-secure-
enough/

http://www.2bsecure.co.il/NetUG/the%20need%20for%20ajax.pdf

by Manu Cohen

Manu Cohen-Yashar is an international expert in application security and distributed systems.
Currently consulting to various enterprises worldwide and Germany banks, architecting SOA
based secure reliable and scalable solutions.
As an experienced and acknowledged architect Mr Cohen-Yashar was hosted by Ron Jacobs in
an ARCast show and spoke about interoperability issues in the WCF age. Mr Cohen-Yashar is a
Microsoft Certified Trainer and trained thousands of IT professionals worldwide.
Mr Cohen-Yashar is the founder of an interoperability group in cooperation with Microsoft Israel
in which distributed system experts meet and discuss interoperability issues. http://www.
interopmatters.com/
A wanted speaker in international conventions, Mr Cohen-Yashar lectures on distributed sys-
tem technologies, with specialization on WCF In which he is considered one of the top experts
in Israel. Manu won the best presentation award in CONQUEST 2007.
Mr Cohen-Yashar is currently spending much of his time bringing application security into the
development cycle of major software companies (Amdocs, Comverse, Elbit, IEI, The Israeli
defense System…)
Mr Cohen-Yashar is giving consulting services on security technologies and methodologies
(SDL etc)
Mr Cohen-Yashar is known as one of the top distributed system architects in Israel. As such
he offers lectures and workshops for architects who want to specialize in SOA, and leads the
architecture process of many distributed projects.

6 www.securityacts.com No 1 October 2009

An Overview of Software Supply Chain Integrity
by Paul Kurtz

© iStockphoto.com/timhughes

Commercial software underpins the information tech-
nology infrastructure that businesses, governments
and critical infrastructure owners and operators rely
upon for even their most vital operations. For that
reason, enterprise customers are rightfully concerned
about the security of commercial software and the
potential for its exploitation by those seeking to ma-
liciously disrupt, influence or take advantage of their
operations.

As the software industry has become increasingly
globalized, questions have been raised about what
additional product security and brand risks are intro-
duced by the increased distribution of software devel-
opment activities, how these risks should be assessed,
and what proactive measures can minimize their oc-
currence.

These questions are of interest to suppliers and cus-
tomers alike and have recently been aggregated under
the label of “software supply chain integrity.”

However, the concept of software supply chain integ-
rity and its key components of “software integrity”
and “software supply chain” are not clearly defined,
thus creating significant challenges for customers and
suppliers working to identify, compare, communicate
and evaluate software integrity best practices. Rec-
ognizing this gap, SAFECode (http://www.safecode.
org/) has developed the first industry-driven frame-
work for analyzing and describing the efforts of soft-
ware suppliers to mitigate the risk of software being
compromised during its sourcing, development or
distribution.

What is Software Integrity?
Software integrity is an element of software assur-
ance, which SAFECode defines as “confidence that
software, hardware and services are free from inten-
tional and unintentional vulnerabilities and that the
software functions as intended.”1 Software assurance
is most frequently discussed in the context of ensuring
that code itself is more secure through the application
of secure software development practices.

1  SAFECode, “Software Assurance: An Overview of Cur-
rent Best Practices,” February 2008.

However, eliminating software vulnerabilities through
secure development practices represents only one as-
pect of software assurance. Another key consideration
is the security of the processes used to handle soft-
ware components as it moves through the software
supply chain.

In practice, software assurance involves a shared re-
sponsibility among suppliers, service and/or solution
providers, and customers encompassing three areas:

Security•	 : Security threats are anticipated and
addressed in the software’s design, development
and testing. This requires a focus on both quality
aspects (e.g., “free from buffer overflows”) and
functional requirements (e.g., “passport numbers
must be encrypted in the database”).

Authenticity•	 : The software is not counterfeit
and customers are able to confirm that they have
the real thing.

Integrity•	 : The processes for sourcing, creating
and delivering software contain controls to en-
hance confidence that the software functions as
the supplier intended.

Software integrity practices are essential to minimiz-
ing the risk of software tampering in the global supply
chain.

The Challenge to Software Integrity
Governments, businesses and consumers purchase
IT solutions (systems, products or services) that are
a complex collection of inter-related components as-
sembled from hardware, software, networks, cloud
services and outsourced operations. Throughout an IT
solution’s lifecycle, which can extend over more than
a decade, many individuals have legitimate access to
its components and operations.

The intentional insertion of malicious code into the
solution’s software during its development or mainte-
nance is often referred to as a supply chain attack. A
supply chain attack can be directed at any category of
software, including custom software, software deliv-
ering a cloud service, a software product, or software

Providing high level of assurance
in ICT systems increasingly relies
on ensuring consistent integrity
practices are applied across the
software supply chain

7www.securityacts.comNo 1 October 2009

embedded in a hardware device.

Software is packaged as a collection of files. To be successful, a soft-
ware supply chain attack must result in either: a) the modification of
an existing file(s); or, b) the insertion of an additional file(s) into the
collection of software files.

Reports2 that have considered supply chain attacks have concluded that:
1) there is no one way to defend against all the potential attack vectors
a motivated attacker may identify; 2) focusing on the place where soft-
ware is developed is less useful for improving security than focusing on
the process by which software is produced and tested; and 3) there are
circumstances when the insertion of malicious code would be almost
impossible to detect.

It is important to recognize that while there is a risk that someone with
malicious intent could attack software during its development, experts3
have concluded that supply chain attacks are not the most likely attack
vector. For example, the practice of hackers or other malicious actors
finding and exploiting existing vulnerabilities remains the most com-
mon method of attack.

Software Integrity Control Points
Sophisticated IT solutions have much in common with other engineer-
ing undertakings. Each IT solution is a collection of components. Each
component or its parts can be: a) developed by its supplier or on that
supplier’s behalf by their subcontractors; or b) licensed to the supplier
by another vendor or obtained from Open Source repositories; or c)
acquired outright by the supplier.

Yet, this complexity can be organized. IT suppliers have natural con-
trol points within software supply chains. To identify these, consider
that each software supplier controls three links of the supply chain. For
these three links each supplier takes similar actions:

Supplier Sourcing1.	 : Select their sub-suppliers, establish the speci-
fication for a sub-supplier’s deliverables, and receive software/
hardware deliverables from sub- suppliers;

2  “Mission Impact of Foreign Influence on DoD Software,” U.S. Defense
Science Board, September 2007. “Foreign Influence on Software: Risk and
Recourse,” Center for Strategic and International Studies, March 2007.
“Framework for Lifecycle Risk Mitigation For National Security Systems in
the Era of Globalization,” U.S. Committee on National Security Systems,
November 2006.

3  “Mission Impact of Foreign Influence on DoD Software,” U.S. Defense
Science Board, September 2007. “Foreign Influence on Software: Risk and
Recourse,” Center for Strategic and International Studies, March 2007.

Product Development and Testing2.	 : Build, assemble, integrate
and test components and finalize for delivery; and,

Product Delivery3.	 : Deliver and maintain their product components
to their customer.

As such, suppliers have an opportunity to apply integrity controls at
each of these key links in the supply chain. For instance, a supplier can
conduct acceptance tests on components received from their suppliers,
and release tests on the components they deliver to their customer.

To be effective in today’s complex global supply chains, software in-
tegrity processes and controls must be designed to be independent of
geography, accommodate diverse sources of software components, and
extend from a vendor’s suppliers to its customers.

An Industry Imperative
Suppliers are aware of threats to their products and are, consequently,
extremely protective of their code base – not only is the integrity of
their products at stake but also their highly valuable intellectual prop-
erty and brand. As such, suppliers delivering software have significant
experience implementing powerful management, policy and technical
controls that reduce the risk that their code can be compromised.

Yet, while individual software companies have integrity assurance pro-
grams in place, there has been little industry-led effort to identify and
share best practices for implementing integrity controls or to provide
customers with more clarity into how the industry is addressing this
issue.

This is a critical gap that SAFECode is currently addressing with a fo-
cused effort to identify the threats, assess the risks, share current prac-
tices for mitigating those risks, and develop process guidelines that oth-
er software companies should consider adopting to protect the integrity
of the software they produce through the global supply chain.

Given that the complexities and interdependencies of the IT ecosystem
require software suppliers to not only be able to demonstrate the secu-
rity of products they produce, but also evaluate the integrity of products
they acquire and use, every software supplier has a significant stake
in the identification, communication and evaluation of best practices
for ensuring software integrity. The challenge is to create practical but
effective methods that build on a broad understanding of the dependen-
cies and threats along the complex software supply chain. Ultimately
the industry-wide adoption of well-defined software integrity practices
should lead to increased customer confidence in the security of IT solu-
tions.

Paul B. Kurtz is executive director of the Software Assurance Forum for
Excellence in Code (SAFECode) and a partner at Good Harbor Consulting. A
recognized cyber security and homeland security expert, Kurtz served in se-
nior positions on the White House’s National Security and Homeland Security
Councils under Presidents Clinton and Bush and as an on-air consultant to
CBS News.

Prior to joining Good Harbor, Kurtz served as the founding Executive Director
of the Cyber Security Industry Alliance (CSIA), an international public policy
advocacy group dedicated to ensuring the privacy, reliability and integrity of
information systems. Previously, Kurtz held a number of positions in the White
House, most recently serving as special assistant to the President and senior
director for critical infrastructure protection on the White House’s Homeland
Security Council (HSC).

 Applications today can no longer rely on the infrastructure to secure their assets. The applications must be built with
integrated security design and that is a great challenge.

We can help you to secure your software!

 SELA, a founding organization of ISSECO®, offers you comprehensive services helping you to integrate application
security into the product life cycle. The services are provided for each and every step of the development life cycle:

Addressing Application Security
 from a Holistic Perspective

 We See the Whole Picture…

solutions@sela.co.i l
www.se la .co . i l / en

Methodologies Deployment

Security Standards and
Requirements Assessments

Architecture and Design
Application Security

Development

Application Security Testing
Penetration Testing

and Hacking

Deployment and Response
to Security Issues

 Application Security
Testing

Application Security
using C++

Web Services
Security

Application Security
Design

 Application Security
 using the Microsoft

.NET Framework

 Introduction to
Information Security

Vista SecurityWindows 7 Security

ISSECO®
Professional for Secure
Software Engineering

Next ISSECO ® Professional
for Secure Software Engineering Courses

Available Courses:

November 17-19/2009
November 25-27/2009
December 20-22/2009
January 20-22/2010
January 25-27/2010
February 7-9/2010
February 24-26/2010

Country City Date

Tel Aviv
Toronto
Tel Aviv
Pune
Singapore
Tel Aviv
Toronto

Israel
Canada
Israel
India
Singapore
Israel
Canada

9www.securityacts.comNo 1 October 2009

Column

The Science of Secure Software

Lately, a number of scientist colleagues and myself were preparing a
proposal for a project that will hopefully be funded by the EU commis-
sion. The project proposal was about measuring security.

„Now how can you do that?“ some of you would probably claim, think-
ing „This is simply impossible“. Others might say „Well, nothing easier
than that, we have been doing this for years“. Actually, I think both are
wrong. What we measure today is mostly insecurity when security went
wrong. This applies for virus outbreaks, thefts, fraud, and so on. We
rarely measure the positive state of security, or more precisely, the nega-
tive state of no security breaches. But there are ways of doing this.

One very interesting approach in software security is the use software
quality metrics that can be used to deduce a potential security level of
the software. For example, the number of input channels is one, another
is the number of output channels, and of course the number of validated
input / output channels. This is the way we need to think in order to
improve security.

However, developing secure software is still considered by most people
to be an art, and not a science. This is the flip side of the great commu-
nity thinking in the security arena: people that think they make the dif-
ference. And indeed, in many situations this is exactly the case. But this
means we will never ever reach a ubiquitous state of security in IT. For
one simple reason: individual knowledge / competencies in people‘s
minds don‘t scale!

To reach a society-wide status of security in information technology, we
need to standardize. We need to standardize security measures, so that
people can better understand, we need to standardize security develop-
ment to avoid really stupid mistakes, we need to standardize security
education to scale, we need to standardize the measurement of security
in order to become transparent and comparable in what we do regarding
security. Remember: we want to scale.

Only when we scale and reach out for standardization, will we be able
to „reproduce“ security - which is a major requirement for becoming a
science.

Don‘t get me wrong: I do admire those guys who are able to hack a
pretty well-secured web server in minutes, and we need them to „put the
finger in the wound“ as we say in German. But they need to be the tip of
the iceberg, and there must be an army of security soldiers that are able
to address the standard stuff. Scale.

Another important requirement for a „science“ is measurability. Besides
standardization, measurability helps to get understood by the masses.
Just think about the CO2 emission per km metric to measure the envi-
ronmental friendliness of a car. What about a „privacy data emission
per transaction“ metric? Sounds weird? Well, we will need to accom-
modate. This is the type of thinking that will bring us forward.

So: yes, I believe we can measure security. It may not as simple as in the
previous example, but that is the way to go.

Sachar Paulus is Professor for Corporate Security and Risk Management in
the department for Business Administration at Brandenburg University of
Applied Sciences. Sachar Paulus has a Ph.D. in number theory and several
publications on cryptography. He was more than 13 years in business, 8
of which with SAP, the world’s largest business software manufacturer, in
various positions related to security, among others Senior Vice President
Product Security and Chief Security Officer. He was member of the RISEPTIS
advisory board of the EC, member of ENISA’s permanent stakeholder group
and is one of the authors of the Draft Report of the Task Force on Interdis-
ciplinary Research Activities applicable to the Future Internet of the EC. He
is also President of ISSECO, a non-for-profit organization aiming at driving
secure software development, and standardizing qualification around secure
software engineering.

by Prof. Dr. Sachar Paulus

 Applications today can no longer rely on the infrastructure to secure their assets. The applications must be built with
integrated security design and that is a great challenge.

We can help you to secure your software!

 SELA, a founding organization of ISSECO®, offers you comprehensive services helping you to integrate application
security into the product life cycle. The services are provided for each and every step of the development life cycle:

Addressing Application Security
 from a Holistic Perspective

 We See the Whole Picture…

solutions@sela.co.i l
www.se la .co . i l / en

Methodologies Deployment

Security Standards and
Requirements Assessments

Architecture and Design
Application Security

Development

Application Security Testing
Penetration Testing

and Hacking

Deployment and Response
to Security Issues

 Application Security
Testing

Application Security
using C++

Web Services
Security

Application Security
Design

 Application Security
 using the Microsoft

.NET Framework

 Introduction to
Information Security

Vista SecurityWindows 7 Security

ISSECO®
Professional for Secure
Software Engineering

Next ISSECO ® Professional
for Secure Software Engineering Courses

Available Courses:

November 17-19/2009
November 25-27/2009
December 20-22/2009
January 20-22/2010
January 25-27/2010
February 7-9/2010
February 24-26/2010

Country City Date

Tel Aviv
Toronto
Tel Aviv
Pune
Singapore
Tel Aviv
Toronto

Israel
Canada
Israel
India
Singapore
Israel
Canada

10 www.securityacts.com No 1 October 2009

Practical Application Security
by Manu Cohen

© iStockphoto.com/caracterdesign

Application Security is a problematic subject.

It is a non-functional requirement, so it cannot be presented to a cus-
tomer, and it is expensive. The management feels that money is being
spent without tangible results, and the developers feel that security is a
pain so they will do anything to avoid it.

When being asked “what is application security?”, so many different
answers are given …

So how can application security be implemented? In this article I will
show how the broad concept of application security can be translated
into simple tangible tasks.

Application security requires design. If it is considered at the early stag-
es of the product life cycle, it can be implemented without significant
costs. If only realistic threats are mitigated, the security expenditure can
be reasonable.

Still the questions “what is application security?” and “what exactly
should be implemented?” remain open.

To facilitate the practical implementation, application security was di-
vided into 10 major chapters.

Input validation
Most attacks we know today and many future attacks begin with mali-
cious input.

In this category we find all the injection attacks, buffer overflow attacks,
some DOS attacks and many more.

Simple input validation would prevent the attack. Simple measures can
prevent huge threats.

There are two types of validation - white box and black box. White box
means that there is a known pattern to the input. Anything outside of the
pattern is considered malicious. This is a very effective method of vali-
dation, as the pattern can be easily checked. Black box is less effective
but more frequently used. In this case there is no pattern. All that exists
is a known list of attacks. If the input looks like a known attack, it is
rejected and everything else is allowed. It is obvious why this method is
less effective; it is impossible to filter out tomorrow’s attacks and even

known attacks are very difficult to identify.

Whenever possible, data should be designed to have a pattern, as vali-
dation is much stronger. In client-server applications, validation can be
done on the server and on the client. Client-side validation should never
be considered as a security measure. Its only purpose is to help the user.
An attacker can easily bypass client-side validation.

Security validation must be done on the server and it must be carried out
as early as possible. There are many security tools like dynamic analyz-
ers that actually check for non-validated data flows in the system.

The rule is simple: Whenever data is received from an untrusted source
(i.e. user), it should be validated.

Authentication
Authentication means identification of entities. Entities can be users,
devices or applications. There are different authentication technologies
for the different types of entities.

Usually users have only user name and passwords, which are the weak-
est type of credentials. In a domain environment users are authenticated
against an Active Directory. Outside the domain an identity manage-
ment database should be established. Sometimes users have stronger
credentials, like a smartcard or biometrics. Governments often promise
to distribute strong ID to their citizens, but until that promise is fulfilled,
user name and passwords will be used for the majority of people.

Application and devices use X509 certificates created by a proper Cer-
tificate Authority (CA). An enterprise can create its own CA and is-
sue certificates to its servers and applications and devices. Certificates
depend on the trust in the CA. The idea is simple: I trust the CA. You
give me a token produced by the CA that says that you are who you are.
Because I trust the CA, I assume that your identity is real. Certificates
also include a public key that can help transfer keys or validate a digital
signature.

An application can use a third party to authenticate on its behalf. The
application must of course trust the authentication provider, who can
authenticate users for many applications. The user will get a single sign-
on experience, and the application will be released from the burden of
managing identities.

11www.securityacts.comNo 1 October 2009

PLEASE CONTACT:

Malte.Ullmann@isqi.org

Secure software engineering has become an
increasingly important part of software quality,
particularly due to the development of the
Internet. While IT security measures can offer
basic protection for the main areas of your
IT systems, secure software is also critical for
establishing a completely secure business
environment.

Become ISSECO Certifi ed Professional for
Secure Software Engineering to produce
secure software throughout the entire de-
velopment cycle. The qualifi cation and certi-
fi cation standard includes

· requirements engineering

· trust & threat modelling

· secure design

· secure coding

· secure testing

· secure deployment

· security response

· security metrics

· code and resource protection.

BE SAFE!
START SECURE
SOFTWARE
ENGINEERING

ISSECO
SECURE SOFTWARE ENGINEERING

®

ISSECO
SECURE SOFTWARE ENGINEERING

®

ISSECO
SECURE SOFTWARE ENGINEERING

®

ISSECO
SECURE SOFTWARE ENGINEERING

®

ISSECO
SECURE SOFTWARE ENGINEERING

®

WWW.ISSECO.ORG

©

12 www.securityacts.com No 1 October 2009

Authorization
Authorization is the process of setting and enforc-
ing entity permissions. There are many authorization
technologies. Operating systems create a token for the
user after passing authentication. This token includes
a list of SIDs (Security Identifier) for the identities
and the groups the user belongs to. Every resource
managed by the operating system has an Access Con-
trol List (figure1).

When a user tries to access such a resource, its SIDs
are compared against the Access Control List to deter-
mine the access policy.

On a client-server scenario, applications depend on a
token created by the application itself or a third-party
authenticator. This token includes the list of roles
(groups) the entity belongs to. The application will
use this data declaratively or imperatively to deter-
mine the access policy.

Another interesting authorization technology is claim-
based authorization. Here the token includes a list of
claims, which are actual information about the entity
identity and the resources it is allowed to consume.
To access a resource, an entity has to present a list
of claims.The token can include a long list of claims,
so the application can receive interesting information
about the user from the token.

Configuration Management
The configuration holds sensitive information about
the application. Connection strings that include cre-
dentials to the database are just an example.

Application use configuration files to store business
policy (rule-based systems), provider types, service
address and configuration, throttling info and more.

Altering the configuration can change the behavior of
the application or break it. Stealing configuration can
create a serious security breach. The fact that the con-
figuration files are put on the production servers does
not mean they are secure. Administrators can be ma-
nipulated and other infrastructure security problems
can open access to these sensitive files.

Configuration must be treated as highly sensitive in-
formation, and thus it should be encrypted and the ac-
cess to it must be logged.

Sensitive information:
What is sensitive information? To answer that ques-
tion, the application and the business must be exam-
ined. The typical developer does not have full infor-
mation about the business, so he cannot answer the
question alone. On the other hand, the business people
do not have full information about the technical as-
pects of the application, so they too cannot answer
the question by themselves. Only deep consolidation
between the two can create a list of sensitive informa-
tion. Now a sensitive information policy can be en-
forced knowing that nothing has been left out.

Cryptography
One of the methods to protect data is cryptography.
Today cryptography research is well advanced and
computers have strong algorithms, but the hackers
also have great tools and computing power.

Choosing the wrong algorithm can have disastrous re-
sults. To create new algorithms that cannot be broken
by modern tools requires good mathematical knowl-
edge and cryptography expertise, which are not usu-
ally available to the average developer.

Sensitive information must be encrypted using well
known and tested algorithms which have been ap-
proved by distinguished institutions like the NSA.

The strength of cryptographic algorithms is a dynam-
ic matter. What was impossible in terms of comput-
ing power a few years ago is now available in every
household. The application should be able to upgrade
the cryptography algorithm when necessary.

When speaking about encryption, the first thing to
think about is key management.

Data is encrypted with symmetric algorithms. Asym-
metric algorithms are used for key exchange and
digital signature, but not for large data encryption.
The one key that is used for encryption must be well
protected. Protection using encryption does not solve
the problem, as you still need to protect the key. This
must be done using well known key management in-
frastructures like DPAPI or TPM.

When speaking about integrity (approval that the
data source is the one expected and the data was not
changed on the way), digital signature is the technol-
ogy to use. Digital signature is based on the fact that
the public key of the source is used to check the sig-
nature at the destination. The destination must be sure
that the public key it uses belongs to the source. One
of the technologies to assure that are X.509 certifi-
cates. The certificate produced by a trusted certificate
authority includes the public key. The trust in the CA
supplies the assurance of the key’s identity.

Parameter manipulations
Distributed applications send parameters between
modules. If the parameters are changed by a middle
man, the application can be hacked. One great example
that demonstrates this relates to a Ferrari which was
bought at a price of one dollar. The trick was that the
application uses the price written in the web form to
actually create the debit. A hacker used an http proxy
and changed this http web form field to the value of
one dollar and thereby accomplished his mission.

Figure – 1 Access Control List

13www.securityacts.comNo 1 October 2009

See Page 5.

Sometimes web sites use an index to present data, and some of these can
be sensitive. When the index is put as a URL parameter, changing that
parameter might reveal sensitive data.

Web forms are a great example how parameters can be changed in the
URL, cookies etc and surprising effects occur.

Sensitive parameters must be protected. One way of doing so is using
digital signatures. Proper design would prevent sensitive actions from
being executed as a result of receiving unprotected parameters.

Exception management
Some technologies use exceptions as the root for error handling. Excep-
tions are great for developers and administrators, because they hold lots
of information about the application and the problem that caused the
exception. This advantage for the developer might be a huge problem
for the user. A user may not understand the information included in the
exception. It may be totally irrelevant for him. The hacker on the other
hand will find this information extremely practical to design the next
attack. If exceptions are exposed to the user, they are available to the
hacker. Building an effective attack requires a lot of internal informa-
tion about the application. Exceptions are a great source for this info.

The hacker would make the application fail and throw exceptions from
which he will learn about application internals. The hacker can learn the
schema of the database, different module names, important file names
etc. All these will help him to design the next attack.

Exceptions should be sanitized. The user should get a general error
message with no internal technical information about the application.
The exception itself should be logged, so administrators can read the
log and understand what went wrong and maybe fix the problem.

Logging and auditing
When the application is being attacked measures must be taken. The at-
tack should be stopped, damage should be fixed and maybe the attacker
can be caught.

The application and its administrators must understand that they are un-
der attack.To do that, the application must distinguish between normal-
ity and abnormality. The normal activities of the application should be
logged and their normal pattern should be understood. When the events
logged do not match the pattern, we may be experiencing an attack.

For example, in a normal scenario we know that on average 5 users per
minute register to the application. If the logging shows registrations of
1000 users per minute, it should look suspicious. Maybe we are under a
Denial Of Service attack.

To handle attack access to situations, sensitive information must be
logged, and the logs must be protected. For example every access to
sensitive database tables should be logged. It makes sense that hackers
will try to access these resources. If the access is logged, it can help to
find the hacker and the security breach he used.

This is why hackers will try to attack the logs themselves and try to
destroy them.

Summary
Application security is more than authentication and SSL - there are a
lot of issues to be taken into consideration.

When designing an application use this list of topics to create a security
plan and make sure all of the above are properly handled in your ap-
plication.

Choose the proper technology for each of the above issues.

Make this list available and understood by developers and testers to
make sure it will be implemented and tested consistently throughout
the application.

When security, which is an abstract term, becomes a list of tangible
tasks, it becomes clear and practical.

14 www.securityacts.com No 1 October 2009

International Secure Software Engineering Council (ISSECO)
by Petra Barzin

© iStockphoto.com/alxpin

Secure Software Engineering
Security concerns at the application level are a grow-
ing risk to the IT community and one of the biggest
challenges for IT security in the next years. Security
vulnerabilities are not limited to a few products, but
affect almost all vendors and products available on
the market. Although the vendors provide security
patches free of charge, the roll-out of patches produc-
es extra costs and bears the risk of new security vul-
nerabilities and critical incompatibilities in complex
IT environments. The everlasting race against time
to find security vulnerabilities before an attacker will
find them or before published exploits can cause any
harm before security patches are available does not
seem to be the best approach to gaining confidence in
the security of software. In order to win the race, the
real causes of security vulnerabilities rather than their
effects must be eliminated.

Security vulnerabilities may be exploited in order to
steal critical company data, to distribute viruses and
worms or to “rat” computer systems. Firewalls or
Intrusion Detection Systems are no longer sufficient
to avert danger, because they cannot prevent attacks
on the applications themselves. I.e. a firewall cannot
decide whether an input parameter is valid or implies
a “code injection” attack. This decision can only be
made by the particular application itself. Consequent-
ly, possible attacks must already be eliminated during
the development of the application. Unfortunately, se-
curity aspects in the software development life cycle
usually do not receive enough attention at the univer-
sities or later in the day-to-day business of software
engineering in order to counter security vulnerabili-
ties at an early stage when they are emerging.

Secure software development demands security-con-
scious and well-educated software architects and de-
velopers. Today, this type of qualification that attests
the very best skills to produce secure software is miss-
ing. ISSECO aims at filling this gap of qualification
by providing an international personnel certification
standard for secure software engineering.

ISSECO Education and Certification
The scope of ISSECO is the education of people in-
volved in the software development life cycle. The

education covers all topics relevant in the area of soft-
ware development. Excluded are safety matters such
as perimeter and infrastructure security. Furthermore,
information security management as well as cryptog-
raphy are out of scope for the ISSECO foundation
level, but might be addressed by further advanced
level certifications (cf. section 4 ”Future prospects”).
Also, ISSECO does not perform security assessments
of processes or IT products.

This personnel certification addresses everyone who
is directly involved in the software development life
cycle, i.e. requirements engineer, software architect,
designer, developer, software quality manager, soft-
ware tester, project manager and all related software
development stakeholders.

No formal entry qualifications - such as work expe-
rience or university degree - are required to take an
ISSECO training course and the examination. How-
ever, some knowledge of information technology and
basics in quality assurance are expected from a can-
didate for Certified Professional for Secure Software
Engineering.

Current accredited ISSECO training providers who
offer training seminars for the Certified Profes-
sional for Secure Software Engineering include
Diaz&Hilterscheid, Fraunhofer Institute IESE, Secor-
vo, Secunet, SQS, and VirtualForge. Other training
providers that choose to support the Certified Profes-
sional for Secure Software Engineering in the future
must be accredited by the ISSECO board.

ISSECO training providers and ISSECO examination
providers must be independent from each other. All
candidates for Certified Professional for Secure Soft-
ware Engineering must take their exams at the Inter-
national Software Quality Institute (iSQI).

ISSECO Syllabus
Software security is not a test case before deploying
an application, and it is not an add-on feature of soft-
ware. Software security is an integral component of
every phase in the whole software development life
cycle. Thus, the structure of the ISSECO syllabus is
based on the different phases of the software develop-
ment life cycle.

Certified Professional for Secure
Software Engineering

15www.securityacts.comNo 1 October 2009

At the beginning the view of the attacker and of the customer need to
be understood in order to be able to create secure software. In order to
see with the eyes of the enemy, the Certified Professional for Secure
Software Engineering must know the motivations of hackers, their skill
level and resource situation, as well as typical hacker thinking when
attacking systems. Furthermore, the Certified Professional for Secure
Software Engineering must have understood what customers expect in
terms of software security and why, in order to classify the customers’
requirements. Describing use cases of the customer, his assets, threats
and risks helps to avoid security conflicts which may arise when a cus-
tomer has a different use case in mind than the software architects and
developers.

Next, the Certified Professional for Secure Software Engineering must
have a basic understanding of the different trust and threat models. Un-
derstanding the assets and its threats is a key element of threat model-
ing. Since threat models help to define the security objectives of an
application, the Certified Professional for Secure Software Engineering
must be familiar with the different threat models. In contrast to threat
models, there are various access control models that describe how to
constrain the ability of a subject to access or generally perform some
sort of operation on an object. It’s important to have these trust models
in mind when designing an application as Certified Professional for Se-
cure Software Engineering.

Furthermore, the Certified Professional for Secure Software Engineer-
ing must feel comfortable with the methodologies for secure software
development. These methodologies describe the processes and practices
associated with producing secure software. Processes that consistently
produce secure software do not require any particular design, develop-
ment, testing, or other methods. They can be applied to any develop-
ment methodology or life cycle model.

The Certified Professional for Secure Software Engineering must un-
derstand the impact of security on all phases of the software develop-
ment life cycle, i.e. security requirements engineering, secure design,
secure coding, security testing, and secure deployment. Security must
be incorporated already at the very beginning of the software devel-
opment life cycle. In the requirements engineering phase the Certified
Professional for Secure Software Engineering must focus on develop-
ing security requirements for the respective application. There are lots
of different areas where requirements originate, and many of them are
relevant to security.

Since architectural and design-level errors made in the design phase are
the hardest vulnerabilities to fix and in most cases difficult to defend,
the security principles and security design patterns must be well under-
stood by the Certified Professional for Secure Software Engineering.
Security architecture and design reviews help to identify problems in

the application design and to discover possible vulnerabilities. Thus,
at design reviews the Certified Professional for Secure Software Engi-
neering must be able to focus on the areas of the application that have
the most impact on security.

Secure coding implies that the Certified Professional for Secure Soft-
ware Engineering understands which programming errors lead to
vulnerabilities like Cross-Site Scripting (XSS) or injection flaws. All
vulnerabilities are introduced by so-called vulnerability patterns, e.g.
buffer overflow, race conditions or improper error handling. The Certi-
fied Professional for Secure Software Engineering must be able to iden-
tify, avoid and remediate them.

During security testing the Certified Professional for Secure Software
Engineering verifies whether all security requirements are met and all
mitigation techniques are effective. Therefore the test techniques of se-
curity testing and the correct interpretation of security testing results
must be understood .

Even if security issues were considered at the initial stages of the soft-
ware development and secure design and coding practice were applied
during development, the security implications of deployment are often
overlooked. Vulnerabilities may still arise during this final phase. Thus,
a secure deployment is another concern of the Certified Professional for
Secure Software Engineering as it is important for the success of the
whole software development life cycle.

Once the software has been deployed, the Certified Professional for Se-
cure Software Engineering is concerned with the implementation of a
security response process in order to make sure that security issues in
software installations are fixed and communicated responsibly.

Security metrics aim to quantify the security of an application. Security
is a horizontal topic that involves every stakeholder, has an impact on
many features, and has to be considered by the Certified Professional
for Secure Software Engineering throughout the complete software de-
velopment life cycle.

Last but not least, code and resource protection is a security concern of
the Certified Professional for Secure Software Engineering, in order to
assure the quality of software and protect it from external sabotage.

Future prospects
Besides the ISSECO foundation level certification there will be ad-
ditional advanced levels, which will be defined at a later date. These
advanced levels may address programming language specific security
matters, IT security management or other topics. There might also be
a security auditor training for assessing software development with re-
spect to security.

Petra Barzin, Diplom-Informatikerin (computer scientist) gradu-
ated in computer science at the Darmstadt University of Applied
Sciences in 1995. From 1995 until 1999 she worked at GMD (aka
FhG) in the research area of Security and Smartcard Technologies.
In 1999, she changed to a leading German vendor for Public Key
Infrastructures (PKI) solutions where she was head of the security
consulting team for four years. Afterwards she switched into prod-
uct management and was responsible for the development of some
selected security products.
Since October 2004 she has been working as a Security Consultant
at Secorvo Security Consulting GmbH.
Petra Barzin has many years of experience in the fields of Pub-
lic Key Infrastructures, secure e-mail solutions, secure Internet
e-commerce protocols, Single-Sign-On, electronic signatures and
compliance to the German Digital Signature Act. Petra Barzin is a
certified ISC2 Information Systems Security Professional (CISSP).

16 www.securityacts.com No 1 October 2009

© iStockphoto.com/RichVintage

The Liability of Software Producers and Testers
by Julia Hilterscheid

A recent decision taken by the German Federal Court of Justice regard-
ing the liability of a freelancer working for a company indirectly effec-
tively reverses the principles relating to the liability of software produc-
ers and testers, which had been applicable so far. If certain services or
insufficiently tested products cause damage to the customer and require
that the customer’s employees have to rectify this during their regular
working time, the customer can now hold the causer(s) of the damage
liable with greater chance of success.

What does this mean for customers, software companies and for tes-
ters?

There are various reasons why software products end up being defi-
cient. Firstly, it can and does happen that the requirement definitions
are inadequate. When specifying the requirements for a project, the
prime concern is the careful planning of the development process and
a precise specification of the properties of the product in the contract.
Clearly, many customers and contractors are aware of this important
criterion. It is, however, all the more amazing that projects are frequent-
ly started in a “vacuum”, i.e. that contracts or project documentation are
only available in a rudimentary form. This means that the requirements
for the program were not specified in a way that makes them capable
of proof, and it will afterwards be difficult or downright impossible for
either party to determine whether the delivered product is in accordance
with the objectives, i.e. whether or not it is free from defects.

Another reason why software is often ends up being faulty is that the
detailed concept has not been performed properly.

On the basis of a schedule, which is inevitably drafted as a rough con-
cept at the start of the project, and in which the contents and the prin-
cipal project milestones are specified, the detailed concept is created,
in which the various functions are defined. Whilst the rough concept is
drafted in coordination between customer and contractor, the technical
department, the responsible marketing personnel and the designers, the
fine concept serves the technical department and the programmers as a
guideline for designing the individual steps. This includes the descrip-
tion of the data architecture and the business logic of the system. Based
on the detailed design, the programmers will develop the procedures
and functions as well as the database structures required. It is therefore
possible for all project stakeholders to look at the detailed design and
inform themselves at any time about contents and objectives of the proj-

ect and to align their activities accordingly.

In order to develop software that is in accordance with the customer’s
requirements, a well functioning quality management is indispensible.
Defects introduced into the software during the definition phase and
programming cannot be discovered if the test process is not managed
by a professional test manager.

In the development of software, the time pressure also plays an im-
portant role as a possible cause for bugs. Each tester knows the panic
when time is running out at the end of projects, when the development
or release of software is delayed, and if a contractually agreed delivery
deadline cannot be met. The customer already threatens with a claim for
damages, or – even worse – has even been able to push through a pen-
alty clause that automatically applies when the deadline is exceeded.

As a result, management, technical departments and sales department
put pressure on the tester, especially in cases where the delivery dead-
line cannot be put back e.g. due to legal requirements. Very often, the
tester is not even responsible for the delays that have occurred; these
could have been caused by bad project planning, late software require-
ments specified by the customer, or inadequately defined requirements.
Nevertheless, the tester is the person that has to somehow cope with
the virtually impossible task of delivering a product of at least satisfac-
tory quality. Quality - due to the fact that everybody knows that quality
cannot be added by the testers. He will brave the gap and hope that the
defect will not occur at the customer as often as it has during testing,
and he will have to release the software – albeit reluctantly. For the
customer this situation can result in severe implications resulting from
the defect.

Up to now, „only“ the customers of the software producer had to bear
the brunt in the wake of inadequately performed or omitted testing,
e.g. if the program did not implement the requirements of the business
processes. Development deficiencies of this type not only lead to in-
creased customer costs, but quite frequently also to situations where the
customer’s employees have to try and rectify the software deficiency
during operation. This had the effect that the employees were often less
efficient and motivated. In addition to this, an inadequate performance
on part of the software producer has an impact both on the customer’s
and the software producer’s external presentation, since both parties can
end up with a bad reputation. Moreover, it was the aggrieved customer

17www.securityacts.comNo 1 October 2009

who was usually the one paying the bill, since he was the one who had
to prove judicially or extrajudicially, which work was left undone as a
result of the rectification of the damage and the financial loss that has
been caused by this.

Up to now, customers have only rarely been in a position where they
could assert a claim for such financially difficult to quantify damages
– or if at all then not for the full amount of the damage. The time and ef-
fort expended on the rectification of faults in operation, which have al-
ready occurred or are expected to occur, was difficult to prove. This was
due to the fact that the customer’s employees were in the middle of the
rectification process before they realized that the work to be performed
and the resulting costs to be incurred were threatening to become a bot-
tomless pit. In addition to this, employees usually still do not log the
activities they had to perform at what time and for how long, in order to
rectify the defects. In court, however, this sort of evidence was a prereq-
uisite for being able to prove the circumstances and therefore for win-
ning the case. Another problem, which in the past was certainly even
more decisive in these cases, was that the customer’s employees were
drawing a salary anyway, which meant that the costs incurred through
correcting the defects were not accounted for separately. This means
that the damage was not one that could be proven in court.

Due to the uncertain outcome of court actions and because of the time
and money involved, customers up to now often refrained from trying
to assert their claim, especially since – as we all know – “software is
always bound to be faulty”. Therefore, software producers have tradi-
tionally had an advantage over their customers when the payment of
damages was negotiated in court settlements.

This has now fundamentally changed due to the decision taken by the
German Federal Court of Justice.

In order to successfully assert claims for damages, it is meanwhile suf-
ficient to present the effort of the employees required for rectification of
the damage and the expected effort required due to future malfunctions
in operation. According to the Federal Court of Justice, the software
producer, as source of the damage, must not gain an advantage from the
fact that the customer’s employees are in any case employed and paid
by the customer.

For software producers, this will mean that in future more accurate plan-
ning of the projects will be necessary if the projects are not to become

economically unviable through successful claims for damages asserted
by customers. The deliverables of the software producer must therefore
already be specified as precisely as possible in the contract, e.g. through
a clear requirements specification. This is also of advantage for the cus-
tomer, because the accurate descriptions of the deliverables also makes
it possible for the customer to prove – if need be - that the software
producer has not fulfilled the contractual obligations.

Furthermore, all necessary software tests must be planned at an early
stage and must be performed with due care. A professionally organized
quality assurance process tries to achieve the highest possible test cov-
erage at an acceptable risk with the lowest possible number of test cas-
es, in order to deliver the best possible software to the customer within
a limited time period.

Provided that all these aspects have been taken into account, it is likely
that any attempts by enterprises to claim damages against the software
producers will be destined to fail, even after the new decision of the
Federal Court of Justice.

Ms. Hilterscheid has been solicitor with practising licence since 1997.
After stays abroad and studies in law in Berlin, she founded first the solici-
tor’s office Hilterscheid, and one year later, together with her husband, the
consultancy Díaz & Hilterscheid Unternehmensberatung GmbH. In addi-
tion, Ms. Hilterscheid has been teaching media law and copyright at the
Berlin University of Applied Science.
Ms. Hilterscheid has been supporting enterprises for more than 10 years
in the discretionary formulation of contracts, general terms and conditions
and license agreements, and accompanies projects legally. She ensures
for her clients that legal requirements are adhered to in their correspon-
dence, on-line appearance as well as in their advertising and marketing
activities.
Ms. Hilterscheid also offers seminars on the subjects of IT-law, trademark
law, copyright and labor law, which can take place in-house if so desired.

www.kanzlei-hilterscheid.de

18 www.securityacts.com No 1 October 2009

Column

The Human Face of Security - #1

“It’s The People, Stupid”

Information security is an interesting field to work in. At some point in
its history, the term “information security” came to be synonymous with
“computer security”, and the large majority of the field became staffed
with computer geeks.

This has led our industry to become incredibly technology-centric, to its
ultimate detriment. Because we entered a new era of computer security
somewhere around 2005, this era places the human as the primary target
point of the “information security” threat landscape.

I say this often when I speak at various conferences, and I am often met
with some amount of derision at the idea that people are the primary is-
sue facing information security professionals in the coming years.

But the data backs it up. I recently spoke at an industry meeting with
Kevin Haley (Symantec’s Director of Security Response), who was de-
tailing the findings in the recent Symantec Internet Threat Report1. The
threat report spends over 100 pages talking about the newest threats
against computer security and how computer systems are getting com-
promised.

I can sum up the data in a single sentence: in almost all cases, the com-
promise is happening because a user is taking some action (e.g. clicking
on a link, visiting a malicious website, opening an email attachment,
etc.)

This may seem obvious to most, but this has not always been the case.
Only a few short years ago (way back in 1999-2003) the main threats
to the internet landscape didn’t involve users at all. The attacks were
directly against computers and came with names like Slammer, Sass-
er, Blaster and Nimda. Information security professionals spent time
understanding how to deploy technologies to protect their computers
from direct attack – firewalls, IDS/IPS, and patch management were
the important things to know if we were going to manage the risk to our
business’ information environment.

Many security professionals are still looking for the technological solu-
tions that will protect them. And they are falling woefully behind the
attackers in understanding the major threat against their organization.

1  http://www.symantec.com/business/theme.jsp?themeid=threatreport

For the first time, attackers are investing resources in defeating the
weakness in the end user rather than the computer system. Unconfirmed
reports have suggested that the writers behind some recent attacks con-
sulted with psychology graduate students in the creation of the delivery
emails and websites behind their malicious code.

Most “information security” professionals are not equipped to deal with
this threat. We are, in military parlance, stuck “fighting the last war”.
And, to paraphrase General Eric Shinseki, if we don’t like change,
we’re going to like irrelevance even less.

So, what do we do?

The answer to that question is going to be the ongoing focus of this
column. The short answer is, of course, work with our users more and
our computers less. Focus on shaping our culture and our business pro-
cesses to value digital information in the same ways that we have val-
ued physical secrets over the years.

As a simple thought-experiment: if you walked in to your average bank
and approached your average (security-unaware) teller, and asked him/
her for all the cash in the drawer, the response would be well-trained,
well-practiced, and would (in almost all cases) lead to the protection of
the money and your arrest.

If you called that same teller on the phone and asked for his/her login
and password information to the corporate network, would you think
that you would be met with the same well-practiced and focused re-
sponse?

As someone who has engaged many organizations both from a com-
puter and a human perspective, I can tell you that you wouldn’t. Yet the
digital theft could lead to a significantly bigger loss to the organization
than the robbery of a single bank branch.

In the words of Tom Peters, “we are not prepared”. But we need to be
– the clients that I deal with on a daily basis are starting to see that the
overwhelming majority of their risk lies with their users, and they are
starting to deal with it.

But we are only at the beginning of a new era in information security
– one that is far less about the risk presented by the computers and far
more reflected in the humans that sit behind the keyboards.

VP Professional Services, CISO Foreground Security
Mike has spent more than a decade helping companies large and small
to protect their information by understanding their vulnerability posture
from the perspective of an attacker. From his work in the late 90’s as a
penetration tester and vulnerability researcher to leadership positions
at nCircle, Neohapsis and Liberty Mutual Insurance Group, his focus has
always been on using vulnerability assessment through penetration test-
ing and social engineering to proactively defend organizations. Mike is
currently the CISO of Foreground Security, where he leads engagements
to help corporate and government customers understand and protect
their security organization. He is also in charge of the advanced curricu-
lum of The Hacker Academy, where he trains security professionals on
the newest methods of computer penetration testing and social engineer-
ing to help better protect their organizations. Mike’s thoughts on security
can be found on his blog at Episteme.ca, and his work on helping build
careers can be found at InfoSecLeaders.com and ConnectedCareer.com.

by Mike Murray

online training
English & German (Foundation)

ISTQB® Certified Tester Foundation Level
ISTQB® Certified Tester

Advanced Level Test Manager

©
 iS

to
ck

ph
ot

o/
Yu

ri_
Ar

cu
rs

Our company saves up to

60%
of training costs by online training.

The obtained knowledge and the savings ensure
the competitiveness of our company.

www.testingexperience.learntesting.com

20 www.securityacts.com No 1 October 2009

Software Supply Chain Integrity in SAP Applications
by Sebastian Schinzel, Gunter Bitz, Andreas Wiegenstein,

Markus Schumacher & Frederik Weidemann

© iStockphoto.com/KieselUndStein

Today’s companies store and process their business assets, or at least
critical information related to their business assets in large software
systems. Therefore, strong access controls should be incorporated in
order to protect those software systems. The access controls should fol-
low the least privilege principle: Users should only be able to access
the minimal set of information that is required to do their work. As an
example, software developers should not be able to access information
about salaries of other employees. Therefore, customers have three dif-
ferent systems jn their SAP application landscape: Firstly, developers
create a software application on behalf of the customer on a develop-
ment system. Secondly, the software application is transported to the
test system, where software testers validate that the application works
properly. Finally, after the software functionality has been validated,
the software is transported to the production system. It is only on the
production system that the application will process the actual business
information. Therefore, neither software developers, nor software tes-
ters are able to access critical information as they solely work on the
development or testing systems, respectively.

From another viewpoint, developers build the access controls in soft-
ware applications that have to limit their own capabilities of accessing
critical information on the production system. This means that develop-
ers must be trusted in two ways:

The developer must be trustable in terms of development skill. He 1.	
should be sufficiently skilled and thorough in order to assure that
the implemented access controls are correct and cannot be circum-
vented. Given the large amount of different security vulnerabilities
which allow malicious users to bypass access controls, achieving
the required skill set needs a lot of secure development training
and experience. Vulnerability lists such as the OWASP Top Ten [3]
and the CWE/SANS Top 25 [4] will give you an idea of the large
variety of security vulnerabilities in software applications [2].

The developer must be trustable as a person. If the developer him-2.	
self has malicious intentions he may intentionally create flawed
access controls in a software application. One possibility could
be that he builds a backdoor into an otherwise correctly working
access control. Such a backdoor could allow the malicious devel-
oper to bypass the access control on the productive application. He
could then be able to access critical information without authoriza-
tion. Generally speaking, companies need to trust employees in
order to get work done. This is at least true for internal employees
and certain trusted partner companies.

However, the supply chain of software development is growing fast.
Companies outsource and offshore software development to external

companies, which in turn may outsource parts of the development or
use external programming libraries and so forth. The total number of all
developers directly involved in the creation of a large software applica-
tion and the developers of the external components that the software ap-
plication uses may be in the hundreds or even thousands. Can you trust
hundreds or thousands of developers you don’t know and who work for
companies you may have never heard of?

People usually are not that trusting, which raises the question of how
the integrity of the software supply chain can be assured. The Software
Assurance Forum for Excellence in Code (SAFECode) created the Soft-
ware Supply Chain Integrity Framework [1] in order to help companies
establish a process to ensure software supply chain integrity. In the fol-
lowing, we will show a practical example of how to test for integrity
breaches in software development.

We have seen that malicious developers actually build backdoors into
software applications in order to bypass access controls at production
systems. However, there is also a good reason for trusted developers to
create backdoors: sometimes, development systems or testing systems
do not apply the same role and authorization concept as the production
system [2]. To allow developers to test the code they have developed
with different access rights, they sometimes perform hard-coded au-
thorization checks at the code level. Listing 1 shows what such a check
could look like in ABAP, SAP’s programming language for business
applications [2].

1. 	 IF sy-uname = ‘JOHNDOE’.
2.		 CALL TRANSACTION ‘SM30’.
3. 	 ELSE.
4.		 AUTHORITY-CHECK OBJECT ‘S_TCODE’.
5.			 ID ‘TCD’.
6.			 FIELD ‘SM30’.
7.		 IF sy-subrc = 0.
8.			 CALL TRANSACTION ‘SM30’.
9.		 ELSE.
10.			 show_error_permission_denied(
).
11. 		 ENDIF.
12.		 ENDIF.

Listing 1: Example of a backdoor for user ‘JOHNDOE’.

In line 1 of listing 1, there is a check for a hard-coded user name. This
user is always allowed to call the SAP transaction SM30, which displays
sensitive employee data. For all other users, the code correctly performs
an authority check starting at line 4. Only if this authority check yields

21www.securityacts.comNo 1 October 2009

a positive result, transaction SM30 is called. So the authority check
works correctly with the single exception of the user with user name
JOHNDOE, who is always allowed to call the transaction directly.

Again note that this code does not necessarily originate from a mali-
cious developer. The developer JOHNDOE could also have included
this “hack” solely for the purpose of testing the code on the develop-
ment or test system. After the testing phase, the developer may have
simply forgotten to remove this backdoor before it was deployed to the
production system.

In order to prevent this type of backdoor effectively, you should per-
form several tasks that are distributed over the whole software develop-
ment process:

You should offer regular secure software development training for 1.	
the developers in order to limit risk with respect to common secu-
rity vulnerabilities.

You should introduce secure coding guidelines that list a set of se-2.	
curity requirements that the developers must follow. That way, you
prevent lengthy discussions whether an issue is indeed a security
vulnerability or just a false positive. They can also be used as an
acceptance criterion for external software development projects.

External security experts should perform security tests before any 3.	
custom application is put into production. This effort should not
only include a final penetration test, but also code audits of the
most critical parts of the application such as access controls and
Web front ends. Static code analysis tools [5] have become mature
and affordable in the last years. They offer a significant improve-
ment in overall code quality and code security if performed at least

on a weekly basis, thus increasing the overall confidence in the
integrity of software supply chains.

In summary, the integrity of the growing software supply chains is a
serious risk, because more and more people are involved in the creation
of software applications. More developers and the increasing complex-
ity of software applications result in a greater risk for security flaws
in the applications on one hand. On the other hand, companies create
software applications within a long supply chain, which raises the ques-
tion of how to verify the integrity of the supply chain. A set of secu-
rity requirements used as acceptance criteria in combination with static
code analysis tools increase the confidence in the integrity of software
supply chains.

Bibliography
[1]:	 The Software Supply Chain Integrity Framework, Gunter
Bitz et. al., http://www.safecode.org/publications/SAFECode_Sup-
ply_Chain0709.pdf

[2]:	 Sichere ABAP-Programmierung, Andreas Wiegenstein, 	
Markus Schumacher, Sebastian Schinzel, Frederik Weidemann, http://
sap-press.de/2037

[3]: 	 OWASP Top Ten Project, http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project

[4]:	 CWE/SANS TOP 25 Most Dangerous Programming Errors,
http://www.sans.org/top25errors/

[5]:	 Static Code Security Analysis for ABAP, http://codeprofil-
ers.com/

Sebastian Schinzel has been a developer and security consultant for more than six years in various technology domains. He
focuses on application security assessments, as well as secure development of business software applications.

Gunter Bitz is responsible for the Security Governance of SAP’s products defines the strategy for testing SAP software.

Andreas Wiegenstein, Chief Technology Officer, Virtual Forge GmbH.
Wiegenstein researches ABAP security and trains developers and security testers at some of the world’s largest companies,
including SAP.

Dr. Markus Schumacher is CEO of Virtual Forge, a leading company for software security for business applications. He was a
representative of the Fraunhofer-Institute SIT. He worked as product manager and project lead at SAP. He holds a PhD in com-
puter science and is frequent speaker at international conferences.

Frederik Weidemann is a Security Consultant with a wide range of project experience in SAP scenarios. He has advanced tech-
nical experience in ABAP and Java and offers his knowledge regularly in trainings and presentations.

22 www.securityacts.com No 1 October 2009

Ku
rfü

rs
te

nd
am

m
, B

er
lin

 ©
 K

at
rin

 S
ch

ül
ke

© iStockphoto.com/DrGrounds

Is security testing about the technology or the
business?

When I started in IT in the 80s, the company
for which I worked had a closed network re-
stricted to about 100 company locations with
no external connections. Security was divided
neatly into physical security, concerned with
the protection of the physical assets, and logi-
cal security, concerned with the protection of
data and applications from abuse or loss.

When applications were built, the focus of
security was on internal application security.
The arrangements for physical security were
a given, and didn’t affect individual applica-
tions. There were no outsiders to worry about
who might gain access, and so long as the
common access control software was working
there was no need for analysts or designers to
worry about unauthorized internal access.

Security for the developers was therefore a
matter of ensuring that the application reflected
the rules of the business; rules such as segrega-
tion of responsibilities, appropriate authoriza-
tion levels, dual authorization of high-value
payments, reconciliation of financial data.

The world quickly changed and relatively
simple, private networks isolated from the rest
of the world gave way to more open networks
with multiple external connections and to web
applications.

Security consequently acquired much greater
focus. However, it began to seem increasingly
detached from the work of developers. Securi-
ty management and testing became specializa-
tions in their own right, and not just an aspect
of technical management and support.

We developers and testers continued to build
our applications, comforted by the thought
that the technical security experts were ensur-

ing that the network perimeter was secure.

Nominally, security testing was a part of non-
functional testing. In reality, it had become
somewhat detached from conventional test-
ing.

According to the glossary of the British Com-
puter Society’s Special Interest Group in Soft-
ware Testing (BCS SIGIST) [1], security test-
ing determines whether the application meets
the specified security requirements.

SIGIST also says that security entails the
preservation of confidentiality, integrity and
availability of information. Availability means
ensuring that authorized users have access to
information and associated assets when re-
quired. Integrity means safeguarding the ac-
curacy and completeness of information and
processing methods. Confidentiality means
ensuring that information is accessible only to
those authorized to have access.

Penetration testing, and testing the security of
the network and infrastructure, are all obvi-
ously important, but if you look at security in
the round, bearing in mind wider definitions of
security (such as SIGIST’s), then these activi-
ties can’t be the whole of security testing.

Some security testing has to consist of routine
functional testing that is purely a matter of
how the internals of the application work. Se-
curity testing that is considered and managed
as an exercise external to the development, an
exercise that follows the main testing, is nec-
essarily limited. It cannot detect defects that
are within the application rather than on the
boundary.

Within the application, insecure design fea-
tures or insecure coding might be detected
without any deep understanding of the appli-
cation’s business role. However, like any class

of requirements, security requirements will
vary from one application to another, depend-
ing on the job the application has to do.

If there are control failures that reflect poorly
applied or misunderstood business logic, or the
business rules, then will we as functional tes-
ters detect that? Testers test at the boundaries.
Usually we think in terms of boundary values
for the data, the boundary of the application or
the network boundary with the outside world.
Do we pay enough attention to the boundary
of what is permissible user behavior? Do we
worry enough about abuse by authorized us-
ers, employees or outsiders who have passed
legitimately through the network and attempt
to subvert the application, using it in ways
never envisaged by the developers?

I suspect that we do not, and this must be a
matter for concern. A Gartner report of 2005
[2] claimed that 75% of attacks are at the ap-
plication level, not the network level. The
types of threats listed in the report all arise
from technical vulnerabilities, such as com-
mand injection and buffer overflows.

Such application layer vulnerabilities are ob-
viously serious, and must be addressed. How-
ever, I suspect too much attention has been
given to them at the expense of vulnerabilities
arising from failure to implement business
logic correctly. This is my main concern in
this article. Such failures can offer great scope
for abuse and fraud. Security testing has to be
about both the technology and the business.

Problem of fraud and insider abuse
It is difficult to come up with reliable figures
about fraud because of its very nature. Accord-
ing to PriceWaterhouseCoopers, in 2007 [3]
the average loss to fraud by companies world-
wide over the two years from 2005 was $2.4
million (their survey being biased towards

Business Logic Security Testing and Fraud
by James Christie

24 www.securityacts.com No 1 October 2009

larger companies). This is based on reported
fraud, and PWC increased the figure to $3.2
million to allow for unreported frauds.

In addition to the direct costs, there were aver-
age indirect costs in the form of management
time of $550,000 and substantial unquantifi-
able costs in terms of damage to the brand,
staff morale, reduced share prices and prob-
lems with regulators.

PWC stated that 76% of their respondents
reported the involvement of an outside party,
implying that 24% were purely internal. How-
ever, when companies were asked for details
on one or two frauds, half of the perpetrators
were internal and half external.

It would be interesting to know the relative
proportions of frauds (by number and value)
which exploited internal applications and cus-
tomer-facing web applications, but I have not
seen any statistics for these.

The U.S. Secret Service and CERT Coordina-
tion Center have produced an interesting series
of reports on “illicit cyber activity”. In their
2004 report on crimes in the US banking and
finance sector [4], they reported that in 70% of
the cases the insiders had exploited weaknesses
in applications, processes or procedures (such
as authorized overrides). 78% of the time the
perpetrators were authorized users with active
accounts, and in 43% of cases they were using
their own account and password.

The enduring problem with fraud statistics is
that many frauds are not reported, and many
more are not even detected. A successful fraud
may run for many years without being de-
tected, and may never be detected. A shrewd
fraudster will not steal enough money in one
go to draw attention to the loss.

I worked on the investigation of an internal
fraud at a UK insurance company that had
lasted 8 years, as far back as we were able to
analyze the data and produce evidence for the
police. The perpetrator had raised 555 fraudu-
lent payments, all for less than £5,000 and
had stolen £1.1 million by the time that we
received an anonymous tip-off.

The control weaknesses related to an abuse of
the authorization process, and a failure of the
application to deal appropriately with third-
party claims payments, which were extremely
vulnerable to fraud. These weaknesses would
have been present in the original manual pro-
cess, but the users and developers had not
taken the opportunities that a new computer
application had offered to introduce more so-
phisticated controls.

No-one had been negligent or even careless
in the design of the application and the sur-
rounding procedures. The trouble was that
the requirements had focused on the positive
functions of the application, and on replicating
the functionality of the previous application,
which in turn had been based on the original
manual process. There had not been sufficient
analysis of how the application could be ex-
ploited.

Problem of requirements & negative re-
quirements
Earlier I was careful to talk about failure to
implement business logic correctly, rather
than implementing requirements. Business
logic and requirements will not necessarily be
the same.

The requirements are usually written as “the
application must do” rather than “the applica-
tion must not...”. Sometimes the “must not” is
obvious to the business. It “goes without say-
ing” - that dangerous phrase!

However, the developers often lack the deep
understanding of business logic that users
have, and they design and code only the “must
do”, not even being aware of the implicit cor-
ollary, the “must not”.

As a computer auditor I reviewed a sales appli-
cation which had a control to ensure that debts
couldn’t be written off without review by a
manager. At the end of each day a report was
run to highlight debts that had been cleared
without a payment being received. Any dis-
crepancies were highlighted for management
action. I noticed that it was possible to over-
write the default of today’s date when clearing
a debt. Inserting a date in the past meant that
the money I’d written off wouldn’t appear on
any control report. The report for that date had
been run already.

When I mentioned this to the users and the
teams who built and tested the application, the
initial reaction was “but you’re not supposed
to do that”, and then they all tried blaming
each other. There was a prolonged discussion
about the nature of requirements.

The developers were adamant that they’d done
nothing wrong, because they’d built the appli-
cation exactly as specified, and the users were
responsible for the requirements.

The testers said they’d tested according to the
requirements, and it wasn’t their fault.

The users were infuriated at the suggestion
that they should have to specify every last little
thing that should be obvious - obvious to them
anyway.

The reason I was looking at the application,
and looking for that particular problem, was
because we knew that a close commercial rival
had suffered a large fraud when a customer we
had in common had bribed an employee of our
rival to manipulate the sales control applica-
tion. As it happened, there was no evidence
that the same had happened to us, but clearly
we were vulnerable.

Testers should be aware of missing or unspo-
ken requirements, implicit assumptions that
have to be challenged and tested. Such as-
sumptions and requirements are a particular
problem with security requirements, which is
why the simple SIGIST definition of security
testing I gave above isn’t sufficient – security
testing cannot be only about testing the formal
security requirements.

However, testers, like developers, are working

to tight schedules and budgets. We’re always
up against the clock. Often there is barely
enough time to carry out all the positive testing
that is required, never mind thinking through
all the negative testing that would be required
to prove that missing or unspoken negative re-
quirements have been met.

Fraudsters, on the other hand, have almost un-
limited time to get to know the application and
see where the weaknesses are. Dishonest users
also have the motivation to work out the weak-
nesses. Even people who are usually honest
can be tempted when they realize that there is
scope for fraud.

If we don’t have enough time to do adequate
negative testing to see what weaknesses could
be exploited, then at least we should do a quick
informal evaluation of the financial sensitivity
of the application and alert management, and
the internal computer auditors, that there is an
element of unquantifiable risk. How comfort-
able are they with that?

If we can persuade project managers and users
that we need enough time to test properly, then
what can we do?

CobIT and OWASP
If there is time, there are various techniques
that testers can adopt to try and detect poten-
tial weaknesses or which we can encourage
the developers and users to follow to prevent
such weaknesses.

I’d like to concentrate on the CobiT (Control
Objectives for Information and related Tech-
nology) guidelines for developing and test-
ing secure applications (CobiT 4.1 2007 [5]),
and the CobiT IT Assurance Guide [6], and
the OWASP (Open Web Application Security
Project) Testing Guide [7].

Together, CobiT and OWASP cover the whole
range of security testing. They can be used
together, CobiT being more concerned with
what applications do, and OWASP with how
applications work.

They both give useful advice about the inter-
nal application controls and functionality that
developers and users can follow. They can also
be used to provide testers with guidance about
test conditions. If the developers and users
know that the testers will be consulting these
guides, then they have an incentive to ensure
that the requirements and build reflect this ad-
vice.

CobiT implicitly assumes a traditional, big up-
front design, Waterfall approach. Neverthe-
less, it’s still potentially useful for Agile prac-
titioners, and it is possible to map from CobiT
to Agile techniques, see Gupta [8].

The two most relevant parts are in the CobiT
IT Assurance Guide [6]. This is organized
into domains, the most directly relevant being
“Acquire and Implement” the solution. This is
really for auditors, guiding them through a tra-
ditional development, explaining the controls
and checks they should be looking for at each
stage. It’s interesting as a source of ideas, and

25www.securityacts.comNo 1 October 2009

as an alternative way of looking at the devel-
opment, but unless your organization has man-
dated the developers to follow CobiT, there’s
no point trying to graft this onto your project.

Of much greater interest are the six CobiT ap-
plication controls. Whereas the domains are
functionally separate and sequential activities,
a life-cycle in effect, the application controls
are statements of intent that apply to the busi-
ness area and the application itself. They can
be used at any stage of the development. They
are;

AC1 Source Data Preparation and Authoriza-
tion

AC2 Source Data Collection and Entry

AC3 Accuracy, Completeness and Authentic-
ity Checks

AC4 Processing Integrity and Validity

AC5 Output Review, Reconciliation and Error
Handling

AC6 Transaction Authentication and Integrity

Each of these controls has stated objectives,
and tests that can be made against the require-
ments, the proposed design and then on the
built application. Clearly these are generic
statements potentially applicable to any appli-
cation, but they can serve as a valuable prompt
to testers who are willing to adapt them to their
own application. They are also a useful intro-
duction for testers to the wider field of busi-
ness controls.

CobiT rather skates over the question of how
the business requirements are defined, but
these application controls can serve as a useful
basis for validating the requirements.

Unfortunately the CobiT IT Assurance Guide
can be downloaded for free only by members
of ISACA (Information Systems Audit and
Control Association) and costs $165 for non-
members to buy. Try your friendly neighbor-
hood Internal Audit department! If they don’t
have a copy, well maybe they should.

If you are looking for a more constructive and
proactive approach to the requirements, then I
recommend the Open Web Application Secu-
rity Project (OWASP) Testing Guide [7]. This
is an excellent, accessible document covering
the whole range of application security, both
technical vulnerabilities and business logic
flaws.

It offers good, practical guidance to testers. It
also offers a testing framework that is basic,
and all the better for that, being simple and
practical.

The OWASP testing framework demands ear-
ly involvement of the testers, and runs from
before the start of the project to reviews and
testing of live applications.

Phase 1: Before Deployment begins

1A: Review policies and standards

1B: Develop measurement and metrics criteria
(ensure traceability)

Phase 2: During definition and design

2A: Review security requirements

2B: Review design and architecture

2C: Create and review UML models

2D: Create and review threat models

Phase 3: During development

3A: Code walkthroughs

3B: Code reviews

Phase 4: During development

4A: Application penetration testing

4B: Configuration management testing

Phase 5: Maintenance and operations

5A: Conduct operational management re-
views

5B: Conduct periodic health checks

5C: Ensure change verification

OWASP suggests four test techniques for se-
curity testing; manual inspections and reviews,
code reviews, threat modeling and penetration
testing. The manual inspections are reviews
of design, processes, policies, documentation
and even interviewing people; everything ex-
cept the source code, which is covered by the
code reviews.

A feature of OWASP I find particularly in-
teresting is its fairly explicit admission that
the security requirements may be missing or
inadequate. This is unquestionably a realistic
approach, but usually testing models blithely
assume that the requirements need tweaking
at most.

The response of OWASP is to carry out what
looks rather like reverse engineering of the de-
sign into the requirements. After the design has
been completed, testers should perform UML
modeling to derive use cases that “describe
how the application works. In some cases,
these may already be available”. Obviously in
many cases these will not be available, but the
clear implication is that even if they are avail-
able, they are unlikely to offer enough infor-

Enter Username
and password

Validate Pass-
word Minimum

Length and
Complexity

User
Authentication

Show Generic
Error Message

Look Account
After N. Failed
Login Attemps

Brute Force
Authentication

Harverest (e.g.
guess) Valid

User Accounts

Dictionary
Attack

Includes

Includes

Includes

Includes

Threatens

Includes

Includes

Mitigates

Mitigates

Mitigates

Mitigates

User

Application/
Server

Hacker/
Malicious User

26 www.securityacts.com No 1 October 2009

mation to carry out threat modeling.

The feature most likely to be missing is the
misuse case. These are the dark side of use
cases! As envisaged by OWASP, the misuse
cases shadow the use cases, threatening them,
then being mitigated by subsequent use cases.

The OWASP framework is not designed to be
a checklist to be followed blindly. The impor-
tant point about using UML is that it permits
the tester to decompose and understand the
proposed application to the level of detail re-
quired for threat modeling, but also with the
perspective that threat modeling requires; i.e.
what can go wrong? what must we prevent?
what could the bad guys get up to?

UML is simply a means to that end, and was
probably chosen largely because that is what
most developers are likely to be familiar with,
and therefore UML diagrams are more likely
to be available than other forms of documen-
tation. There was certainly some debate in
the OWASP community about what the best
means of decomposition might be.

Personally, I have found IDEF0 a valuable
means of decomposing applications while
working as a computer auditor. Full details of
this technique can be found at www.idef.com
[9].

It entails decomposing an application using a
hierarchical series of diagrams, each of which
has between three and six functions. Each
function has inputs, which are transformed
into outputs, depending on controls and mech-
anisms.

Is IDEF0 as rigorous and effective as UML?
No, I wouldn’t argue that. When using IDEF0
we did not define the application in anything
like the detail that UML would entail. Its value
was in allowing us to develop a quick under-
standing of the crucial functions and issues,
and then ask pertinent questions.

Given that certain inputs must be transformed
into certain outputs, what are the controls and
mechanisms required to ensure that the right
outputs are produced?

In working out what the controls were, or
ought to be, we’d run through the mantra that
the output had to be accurate, complete, autho-

rized, and timely. “Accurate” and “complete”
are obvious. “Authorized” meant that the out-
put must have been created or approved by
people with the appropriate level of authority.
“Timely” meant that the output must not only
arrive in the right place, but at the right time.
One could also use the six CobiT application
controls as prompts.

In the example I gave above of the debt being
written off, I had worked down to the level of
detail of “write off a debt” and looked at the
controls required to produce the right output,
“cancelled debts”. I focused on “authorized”,
“complete” and “timely”.

Any sales operator could cancel a debt, but
that raised the item for management review.
That was fine. The problem was with “com-
plete” and “timely”. All write-offs had to be
collected for the control report, which was run
daily. Was it possible to ensure some write-offs
would not appear? Was it possible to over-key
the default of the current date? It was possible.
If I did so, would the write-off appear on an-
other report? No. The control failure therefore
meant that the control report could be easily
bypassed.

The testing that I was carrying out had noth-
ing to do with the original requirements. They
were of interest, but not really relevant to what

I was trying to do. I was trying to
think like a dishonest employee,
looking for a weakness I could
exploit.

The decomposition of the appli-
cation is the essential first step of
threat modeling. Following that,
one should analyze the assets for
importance, explore possible vul-
nerabilities and threats, and cre-
ate mitigation strategies.

I don’t want to discuss these in
depth. There is plenty of material
about threat modeling available.
OWASP offers good guidance,
[10] and [11]. Microsoft provides
some useful advice [12], but its
focus is on technical security,

whereas OWASP looks at the business logic
too. The OWASP testing guide [7] has a sec-
tion devoted to business logic that serves as a
useful introduction.

OWASP’s inclusion of mitigation strategies in
the version of threat modeling that it advocates
for testers is interesting. This is not normally
a tester’s responsibility. However, considering
such strategies is a useful way of planning the
testing. What controls or protections should
we be testing for? I think it also implicitly ac-
knowledges that the requirements and design
may well be flawed, and that threat modeling
might not have been carried out in circum-
stances where it really should have been.

This perception is reinforced by OWASP’s
advice that testers should ensure that threat
models are created as early as possible in the
project, and should then be revisited as the ap-
plication evolves.

What I think is particularly valuable about
the application control advice in CobIT and
OWASP is that they help us to focus on se-
curity as an attribute that can, and must, be
built into applications. Security testing then
becomes a normal part of functional testing, as
well as a specialist technical exercise. Testers
must not regard security as an audit concern,
with the testing being carried out by quasi-
auditors, external to the development.

Getting the auditors on our side
I’ve had a fairly unusual career in that I’ve
spent several years in each of software devel-
opment, IT audit, IT security management,
project management and test management. I
think that gives me a good understanding of
each of these roles, and a sympathetic under-
standing of the problems and pressures associ-
ated with them. It’s also taught me how they
can work together constructively.

In most cases this is obvious, but the odd one
out is the IT auditor. They have the reputation
of being the hard-nosed suits from head office
who come in to bayonet the wounded after a
disaster! If that is what they do, then they are
being unprofessional and irresponsible. Good
auditors should be pro-active and constructive.
They will be happy to work with developers,
users and testers to help them anticipate and
prevent problems.

Auditors will not do your job for you, and they
will rarely be able to give you all the answers.
They usually have to spread themselves thinly
across an organization, inevitably concentrat-
ing on the areas with problems and which pose
the greatest risk.

They should not be dictating the controls,
but good auditors can provide useful advice.
They can act as a valuable sounding board, for
bouncing ideas off. They can also be used as
reinforcements if the testers are coming under
irresponsible pressure to restrict the scope of
security testing. Good auditors should be the
friend of testers, not our enemy. At least you
may be able to get access to some useful, but
expensive, CobiT material.

Auditors can give you a different perspective
and help you ask the right questions, and being
able to ask the right questions is much more
important than any particular tool or method
for testers.

This article tells you something about CobiT
and OWASP, and about possible new tech-
niques for approaching testing of security.
However, I think the most important lesson
is that security testing cannot be a completely
separate specialism, and that security testing
must also include the exploration of the appli-
cation’s functionality in a skeptical and inquis-
itive manner, asking the right questions.

Validating the security requirements is impor-
tant, but so is exposing the unspoken require-
ments and disproving the invalid assumptions.
It is about letting management see what the
true state of the application is – just like the
rest of testing.

Manufacturing
Function

Controls

Outputs

Mechanisms

Inputs

27www.securityacts.comNo 1 October 2009

References
[1] British Computer Society’s Special Interest Group in Software Testing (BCS SIGIST) glossary. http://www.testingstandards.co.uk/glossary.
htm

[2] Gartner Inc. “Now Is the Time for Security at the Application Level”, 2005. http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIs-
TheTimeForSecurity.pdf

[3] PriceWaterhouseCoopers, “Economic crime- people, culture and controls. The 4th biennial Global Economic Crime Survey”, 2007.

[4] US Secret Service “Insider Threat Study: Illicit Cyber Activity in the Banking and Finance Sector”, 2004. http://www.secretservice.gov/ntac/
its_report_040820.pdf

[5] CobiT 4.1, IT Governance Institute, 2007. http://www.isaca.org/

[6] CobiT IT Assurance Guide, IT Governance Institute, 2007.http://www.isaca.org/

[7] OWASP Testing Guide, V3.0, 2008. http://www.owasp.org/index.php/Category:OWASP_Testing_Project

[8] Gupta, S. “SOX Compliant Agile Processes”, Agile Alliance Conference, Agile 2008. http://submissions.agile2008.org/files/CD-966.pdf

[9] IDEF0 Function Modeling Method. http://www.idef.com/IDEF0.html

[10] OWASP “Threat Modeling”, 2007. http://www.owasp.org/index.php/Threat_modeling

[11] OWASP Code Review Guide “Application Threat Modeling”, 2009. http://www.owasp.org/index.php/Application_Threat_Modeling

[12] Microsoft,” Improving Web Application Security: Threats and Countermeasures”, 2003. http://msdn.microsoft.com/en-us/library/ms994921.
aspx

James lives in Perth in Scotland . He is currently working as a consultant
through his own company, Claro Testing Ltd (www.clarotesting.com).
James has 24 years commercial IT experience, mainly in financial services,
with the General Accident insurance company and IBM (working with a
range of blue-chip clients) throughout the UK and also in Finland.
His experience covers test management (the full life-cycle from setting the
strategy, writing the test plans, supervising execution, through to imple-
mentation), information security management, project management, IT
audit and systems analysis.
In 2007 he successfully completed an MSc in IT. His specialism was
“Integrating usability testing with formal software testing models”. He is
particularly interested in the improvement of testing processes and how
the quality of applications can be improved by incorporating usability engi-
neering and testing techniques.
James is a Chartered IT Professional and a professional member of the
British Computer Society (MBCS). He holds the ISEB Practitioner Certifi-
cate in Software Testing and is a member of the Usability Professionals
Association.

28 www.securityacts.com No 1 October 2009

© iStockphoto.com/Inok

If you are a software tester, software developer, development or test
manager, or another other software professional concerned with quality
and security, you probably know that developing secure software is no
longer simply desirable—it’s completely essential.

Some developers might assume that most security problems arise from
the operating system or networking layers, well below the application
code they are working on. However, recent figures for Web-based appli-
cations from the Open Web Application Security Project (www.owasp.
org) show that over three-quarters of security exploits arose from ap-
plications (see Table 1).

So, you know you need secure code, but how to get there? What are
your security risks? What security failures and bugs do you have? What
do these security risks, failures, and bugs mean? How can you reduce
security risk in a way that doesn’t create new problems? How do you
monitor your progress over time? This article will outline seven steps
that will allow you to answer these and other questions as you improve
your software’s security.

Assess the Risks
Applications tend to have characteristic security risks. These risks often
arise from the implementation technology. For example, C and C++
are notorious for their lack of inherent array range checking, and con-
sequent buffer-overflow bugs, which allow hackers to insert malicious
code into very long input strings. People writing applications with data-

bases have to
worry about
SQL injec-
tion, where
hackers put
queries into
o t h e r w i s e -
benign fields
and gain ac-
cess to sensi-
tive data.

S e c u r i t y
risks can also
arise from
the business
application
domain. For

example, since they deal in money, banking applications are attractive
targets for criminals and a major source of worry for bank IT depart-
ments. Applications that store personal information, such as medical
history, are subject to regulations like HIPAA that require strict privacy
controls.

Risk awareness is the first step in risk reduction. Companies have been
reluctant to let outsiders know about the security failures they’ve had,
but some of their failures make the news, and users report others. For
example, the Open Web Application Security Project, www.owasp.org,
provides good information for those developing Web applications, as
does the World Wide Web Consortium’s security page, www.w3.org/
Security. Carnegie-Mellon’s Software Engineering Institute’s CERT
Coordination Center, www.cert.org, provides a broader look at com-
puter security issues. Last but not least, check out the searchable Risk
Digest archives, catless.ncl.ac.uk/Risks, for great anecdotes and com-
mentary on software risks, including security-related risks.

In addition to being aware of the failures, you need to be aware of the
underlying bugs themselves. Depending on the kind of applications
you’re writing, you’ll want to read appropriate books and Web sites for
hints on common insecure coding constructs, how developers can avoid
them, and how testers can find them. For example, entering “secure pro-
gramming” in the Amazon.com search engine yields dozens of books,
some general, some quite specific.

Once you are aware of the kinds of security risks that could affect your
software, do a security risk analysis. Identify the specific risk items
that you should be aware of. Meet with stakeholders to determine the
level of risk in terms of likelihood and impact. Likelihood relates to the
chances of any given risk becoming an actual security bug in your soft-
ware. Impact relates to the effect on customers, users, and your software
should the bug be exploited. Your analysis of the risks and their associ-
ated levels of risk will allow you to create a prioritized list of potential
security failures. 1

Test to Know Where You Stand
If you’re like most software development organizations, you don’t have
the luxury of starting over with new code on every project. How secure
is that collection of existing code? If you’re like many organizations,
you haven’t really had a chance to check. So, check the security of your
existing software through a security test.
1	 I describe the process of risk analysis in my books Managing the Testing
Process and Pragmatic Software Testing.

Exploited Vulnerability Percent
Occurrence

Server Applications 41%
Non-Server Applications 36%
Operating System Issues 15%
Hardware Issues 4%
Communication Protocol Issues 2%
Others 2%
Network and Protocol Stack Issues 1%
Encryption Issues 0%

Table 1: Occurrence of Security Exploits by Vulnerability

A Risk-Based Approach to Improving Software Security
by Rex Black

29www.securityacts.comNo 1 October 2009

This type of test is often called a penetration test. Its purpose, as the
name suggests, is to discover ways in which hackers and other unau-
thorized users can penetrate your system. Such a test is useful to check
for security failures that your application already presents to the real
world.

Remember that the best lock in the world does no good if it’s installed
in a door made of rotten wood. Similarly, applications with great se-
curity features that are installed in insecurely-configured environments
can be hacked.

Do your installation procedures, user documentation, provisioning pro-
cesses, and notification mechanisms support or impede security? I re-
cently signed up for an account on an e-commerce site that seemed to
have good security at first. I was asked to create a user name and pass-
word. The application enabled SSL encryption during this process. The
input field masked the password when I entered it. I was then told that
the application would e-mail me an activation notice after it verified
my information. When I received the activation notice, the user name
and password were in the e-mail, unencrypted and available to anyone
who saw or intercepted that e-mail! Private and identifying information
should not be stored or transmitted in an insecure fashion.

Consider identifying risk cases for each security requirement. Risk cas-
es are like use cases—though perhaps more properly termed “misuse
cases”—that lay out various scenarios of security failure. If you think
about end-to-end processes that users go through, along with the envi-
ronments in which your software will be deployed, you may think of
some possible failures or issues you otherwise would have missed. You
can confirm the presence or absence of these failures through specific
tests.

You can learn how to run penetration tests yourself. Alternatively, you
can hire a testing services provider to handle it for you. On the one
hand, you might have to make a significant investment in training and
books to learn how to perform penetration tests properly and therefore
decide a professional external resource can do a better job. On the other
hand, you might feel more comfortable having security expertise in
your team and therefore decide to invest in growing it.

Thoroughly testing applications that will run in various installed envi-
ronments can be a real challenge. Such tests are a combination of end-
to-end process testing, compatibility testing, and penetration testing.
Depending on the multiplicity of environments, users, and procedures
that your application can support, such tests cost a lot of money in terms
of systems and effort. To save money on setting up a large variety of test
configurations in-house, consider using a testing service provider.

Your prioritized list of risks should guide the penetration test, but you
should also test for other failures that you might not have thought of.
Based on the failures you find, revise your list of risks. Add new risks
where you find unexpected failures. Increase the likelihood and impact
based on the failures you find. You might also decrease the likelihood
and impact for risks that don’t relate to observed failures, or relate to
failures that were less important than you expected. However, be care-
ful about assuming that a risk that isn’t exploitable today won’t be ex-
ploitable in future releases of the software.

Keep a list of the security problems you find and where you found them.
You’ll need this list to fix the problems, of course. However, I also
recommend that you classify the problems in a few ways. One clas-
sification is based on the type of security flaw.2 Another is the date on
which the code was written or the version of the software in which it
was introduced. Yet another is the major subsystem or component the
code is part of. In addition, classify the severity (impact on the system)
and priority (impact on the user) of each failure. Finally, classify each
problem based on the security risks you identified earlier.

Analyze to Know Where You Stand
The security test mentioned above will find security-related failures.
However, not every security bug in the code will always exhibit a secu-

2	 For example, you can use the OWASP’s Top Ten Web application
security flaws if you are creating Web applications (www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project).

rity failure. In other words, it is possible to have underlying bugs that
did not exhibit any symptoms during the penetration test. Therefore, to
find additional problems, do a static analysis of the code.

Static analysis means going through your code to look for bugs that
could cause failures. You might have input fields which are not appro-
priately checked for size or syntax before being handed off for process-
ing. You might have weak error handling. You might have situations
where unauthorized users can pass snippets of languages like SQL or
Korn shell into the system where they would be executed. Just because
these bugs didn’t result in failures doesn’t mean they aren’t bugs, and
you should look for them.

You can automate your static analysis using tools. A wide variety of
static analysis tools for identifying security weaknesses in code exist,
so you can probably pick one that fits your exact language, environ-
ment, needs, and budget. For a large, existing code base, these tools will
identify a large number of problems. Not all of these problems are of
the same severity and importance. Somehow, you’ll need to focus your
attention on the most important of them. Fortunately, good tools will al-
low you to turn particular rules on and off and tune your static analysis
at a level of granularity as fine as individual lines of code. Again, your
list of risks can help guide you as you determine where to focus.

Based on your static analysis, add to your list of security problems
where you found each problem, and its classification.

Evaluate to Understand Where You Stand
You’ve gathered a lot of data in the first few steps. Time to evaluate
that data. What does the data mean; i.e., what information and patterns
are hiding in the data? What is a smart plan of action for improving
software security?

First of all, sort the problem list by priority and severity. You will likely
want to immediately fix the problems with the highest levels of prior-
ity and severity. Microsoft famously reached a point where the number
of critical security bugs became so high that they embarked on a crash
problem to resolve these bugs. For months, Microsoft programmers did
nothing but address security bugs. You might not be in as deep a hole—
or be able to spare that much effort—but you’ll want to address the
urgent items right away.

However, you should also do some further evaluation before wading
into battle with the security bugs. Bugs do not tend to be evenly distrib-
uted across the code base, but rather tend to exist in clusters. Decades
ago, IBM studied their MVS software and found that 38% of the bugs
that caused problems in production lived in 4% of the modules. On an
Internet appliance project, I found that 69% of the bugs we discovered
during testing lived in 25% of the modules. By looking for modules
with particularly high numbers of security bugs, you might find that
completely refactoring one or two modules is the smartest way to im-
prove your software’s security.

As you start to think about the long-term, evaluate how many bugs arise
from each kind of security flaw. This will tell you the most typical prob-
lems that you and your team face. Can you reduce the incidence of such
problems through training for your developers? Better code reviews?
Better design reviews? All three? After all, you don’t want to be fighting
a constant battle against security problems with every release, so you
and your team need to learn how to create better software.

You should also evaluate the incidence of security bugs based on the
age of the code in which they were found. Software tends to wear out
over the years, not as physical devices do, but rather through on-going
maintenance which reduces the quality of the code. In addition, older
code that was written when a programming language was new—or
when the team was new to the language or technology—might contain
more bugs. Plan for long-term refactoring of decrepit modules that are
disproportionate contributors to software insecurity.

Repair the Problems - Carefully
Any time a developer repairs a bug in software, there is a risk that might
introduce a new bug. Many people call these regression bugs, because
they represent some reduction in the level of software quality that was

30 www.securityacts.com No 1 October 2009

present before.

The risk of regression bugs applies to security bugs as much as any
other bug. In addition, you can’t assume that repairing a security bug
would necessarily introduce either no bug at all or another security bug.
Fixing a security bug might introduce a functionality bug. So, as you
repair the security bugs, make sure you have a plan to deal with regres-
sion risk. How can you do so?

Your test team typically deals with part of the regression problem. They
might have created an automated suite of regression tests for functional-
ity, performance, reliability, or other important quality characteristics.
However, waiting for the end-stage testing is not ideal, as the cost and
schedule implications of dealing with a bug increase the longer that bug
is in the system.3

So, before delivering code to the test team, the developers should use
code reviews, static analysis, and automated unit tests to help manage
regression risk for each change they had made to the system. Code re-
views, ideally performed by at least two experts in addition to the au-
thor, should help catch many problems. Using the static analysis tool
you’ve already invested in to check your new code is a best practice,
and good static analysis tools can find many types of problems, not just
security problems. Finally, the use of an automated unit testing har-
ness will provide a framework for an automated set of tests that will
allow developers to modify and refactor code with a higher level of
confidence.4

Examine Results in the Real World
Any time you make a process change, you should monitor how those
process changes affect the real world. For example, a couple years ago I
was training for a marathon, but I hurt my ankle by overtraining in hills.
So, I switched to a training schedule that focused on low-impact aerobic
exercises like bicycling and elliptical machines while my ankle healed.
Did this process change help me achieve success? Two real world mea-
sures applied:

Based on the symptoms in my ankle, did it heal while I continued 1.	
this training regimen, and could I gradually reintroduce running to
the training? The answers to both questions were “yes.”

Was I actually able to run the marathon without pain and without 2.	
re-injuring myself? Thankfully, the answer to this question was
“yes” as well.

Similarly, you want to make sure that your new process reduces the
number of known security bugs in your code over time, that the test
team finds fewer bugs during system test execution, and that the num-
ber of security-related incidents that occur in the field gradually goes
down.

You should not expect that these three numbers would go down mono-
tonically. Some natural variation in the testing and development pro-
cesses will mean the number of known bugs might go both up and
down. However, the trend over the long-term (say, one year or more)
should be that the average number of known security bugs in any given
month has gone down.

Similarly, you might have good months and bad months—months
where no field security incidents are reported and months where a rash
of them are—but this might simply be a natural variation in usage pat-
terns or seasonal usage. For example, you would expect that financial
application security bugs related to fiscal-year closing operations would
increase at the end of the year. However, again, the trend over the long-
term should be that the average number of security incidents in any
given month has gone down.

In addition to monitoring your own security bugs and failures, follow
3	 For more on the economics of defects, see my article “Testing ROI: What
IT Managers Should Know,” on the Library page of our Web site, www.rbcs-us.com.

4	 For a detailed case study of how RBCS helped one client implement a
process of code reviews, static analysis, and automated unit testing, including cre-
ation of an automated test tool framework, see my article “Mission Made Possible,”
written with Greg Kubaczkowsi, at the Library page of our Web site, www.rbcs-us.
com.

the news. The Internet and trade magazines can help you check for
problems in applications similar to yours in business domain, imple-
mentation technology, or both. If you hear stories about problems that
you think might constitute a risk for your application, update your risk
analysis and re-evaluate accordingly.

Institutionalize Success
The last step of this process is to do everything all over again, on every
single project. That’s something of an overstatement, since you don’t
need to start from a clean slate. You will need to repeat process, though,
using your existing work as a baseline:

Re-assess security risks.1.	

Re-test the application for security failures.2.	

Re-analyze the software for security bugs.3.	

Re-evaluate patterns in security risks, failures, and bugs.4.	

Repair with care.5.	

Re-examine the real-world results.6.	

In each of these steps, make sure you look both at new concerns related
to changes to your applications and concerns you might have previously
overlooked.

Institutionalizing success, the final step of process improvement, is very
easy to overlook. After a big push to improve software security, you
might be tempted to celebrate success, relax your guard, and gradually
slip back into old practices of coding.

We recently had a client that asked us to run a penetration test of their
systems. We found a number of security failures during this test, and
reported our findings to the engineering team. Later in the project,
shortly before release, we re-ran the penetration test. The engineers had
resolved all of the failures we had found previously. However, they had
also built a bunch of new stuff, which had the exact same kinds of un-
derlying security bugs exhibiting similar security failures. My client
had dealt with the manifestations of bad security practices by repairing
the security bugs we had found the first time, but had not changed the
bad security practices themselves.

Conclusions
Software security is an important concern, and it’s not just for operating
system and network vendors. If you’re working at the application layer,
your code is a target. In fact, the trend in software security exploits is
away from massive, blunt-force attacks on the Internet or IT infrastruc-
ture and towards carefully crafted, criminal attacks on specific applica-
tions to achieve specific damage, often economic.

In this article, I laid out a seven-step process to reduce your software’s
exposure to these attacks.

Assess security risks to focus your improvements.1.	

Test the software for security failures.2.	

Analyze the software for security bugs.3.	

Evaluate patterns in security risks, failures, and bugs.4.	

Repair the bugs with due care for regression.5.	

Examine the real-world results by monitoring important security 6.	
metrics.

Institutionalize the successful process improvements. 7.	

Carefully following this process will allow your organization to im-
prove your software security in a way which is risk-based, thoroughly
tested, data-driven, prudent, and continually re-aligned with real-world
results.

31www.securityacts.comNo 1 October 2009

With a quarter-century of software and systems engineering experi-
ence, Rex Black is President of RBCS (www.rbcs-us.com), a leader in
software, hardware, and systems testing. For over a dozen years, RBCS
has delivered services in consulting, outsourcing and training for soft-
ware and hardware testing. Employing the industry’s most experienced
and recognized consultants, RBCS conducts product testing, builds and
improves testing groups and hires testing staff for hundreds of clients
worldwide. Ranging from Fortune 20 companies to start-ups, RBCS clients
save time and money through improved product development, decreased
tech support calls, improved corporate reputation and more. As the leader
of RBCS, Rex is the most prolific author practicing in the field of software
testing today. His popular first book, Managing the Testing Process, has
sold over 35,000 copies around the world, including Japanese, Chinese,
and Indian releases. His five other books on testing, Advanced Software
Testing: Volume I, Advanced Software Testing: Volume II, Critical Testing
Processes, Foundations of Software Testing, and Pragmatic Software
Testing, have also sold tens of thousands of copies, including Hebrew,
Indian, Chinese, Japanese and Russian editions. He has written over thirty
articles, presented hundreds of papers, workshops, and seminars, and
given about thirty keynote speeches at conferences and events around
the world. Rex has been President of the International Software Testing
Qualifications Board and is a Director of the American Software Testing
Qualifications Board.

Kanzlei Hilterscheid

Farbwerte

CMYK:
56, 11, 0, 18

RGB:
105, 137, 175

Pantone:
645 u

Kanzlei Hilterscheid

Farbwerte

CMYK:
56, 11, 0, 18

RGB:
105, 137, 175

Pantone:
645 u

Berlin, Germany

IT Law
Contract Law

German
English
French
Spanish

www.kanzlei-hilterscheid.de
info@kanzlei-hilterscheid.de

Kanzlei Hilterscheid

Farbwerte

CMYK:
56, 11, 0, 18

RGB:
105, 137, 175

Pantone:
645 u

©
 K

at
rin

 S
ch

ül
ke

32 www.securityacts.com No 1 October 2009

© iStockphoto.com/bunhill

U.S. Government passes the stimulus package and includes $355M
for cyber security. Hacking against Government sites including elec-
tric grid intensifies. New regulations for privacy are being passed or
proposed across Europe, Asia, and Americas (http://lastwatchdog.com/
senate-bill-mandates-strong-federal-role-internet/). Hacking against
government agencies and corporations across the globe continues at a
faster rate than ever. From social networking sites like Facebook and
Twitter to large corporations like Heartland to government agencies like
Utilities and Pentagon – no one has been spared. Even countries are
using cyber wars as the latest lethal weapons against one another. A
lot of these attacks are occurring at the Web application layer meaning
through the Web sites.

Hackers are getting smarter. They are no longer trying to attack the
network layer which has gotten a lot more secure over the last few years
with a vast majority of organizations deploying firewalls and Intrusion
Detection Systems (IDSs). The low-hanging fruit for hackers are Web
applications. Why? Because that’s where the vulnerabilities are. Our
research shows that Web application vulnerabilities continue to domi-
nate amongst the total published vulnerabilities, as is evidenced from
the chart below.

In spite of all the attacks, regulations, and all the hype, why aren’t com-
panies and governments doing something about it? One reason is that
most people still don’t quite understand what Web application security
means or they don’t believe they’ll ever get hacked. In this article, we
are going to try and demystify the application security landscape and
also bust some of the myths around this space.

Before we look at Web application security, let’s define a Web applica-
tion. Most consumers and even a lot of IT professionals don’t realize
that Web sites that allow us to do business transactions online are pow-
ered by Web applications. And, in some cases there are hundreds or
even thousands of these applications acting as the engine for Web sites.
Simply put, a Web application is a software program that’s written in
a browser- supported language like HTML, and is accessed over the

browser. This is different from the older ways of applications that used
to have fat clients which accessed the server.

Technically, the fact that these Web applications are vulnerable is not
a new phenomenon. The fact is that they have always been vulnerable
since the early days of the Web in the late 90s. However, hackers started
exploiting these vulnerabilities in the early 2000s as networks got more
secure and hackers realized that most Web sites were wide open for
hacking.

So, how did these applications get deployed with so many vulner-
abilities? First, most developers were not trained to think about secu-
rity when developing applications. During the client-server era, there
weren’t any public facing applications, so no one thought it would be a
big issue. The Web made everything open which was great for business,
but with everything good comes something bad. In this case, we got the
hackers. Secondly, even developers, who were trained in security and
really understand security issues, suffer from lack of time. Most devel-
opers are extremely busy and under a time crunch to get the applications
out in time. They don’t have time to even do unit testing, forget about
security testing.

There are a lot of vendors touting Web application security since it’s
become the buzz phrase of the decade. At a high level, there are really
only two broad categories of solutions in this space as follows:

Web Application Security Vulnerability Management•	 – One
can view this as testing of Web applications just like testing of
applications for functional and performance features. There are a
number of options available to do this type of testing including
manual pen testers – internal or external, Web application scanners
(black box or dynamic testing) done through the Web interface just
like a hacker, Web application scanning in Software as a Service/
managed service, source code scanning (scanning of raw code to
find vulnerabilities). Most experts and analysts agree that the best
approach to start with is dynamic or black box testing, because you
get the biggest bang for the buck. If you do not have expertise in-
house, a SaaS solution is the best one to start with. Some vendors
like Cenzic offer both Software and SaaS solutions to help custom-
ers transition from one to the other if appropriate. Manual pen tes-
ters can add further value by helping customers with the processes
and remediation information as well as address security holes that
cannot be found through automation like social engineering types
of vulnerabilities.

Web application firewall•	 – Web application firewalls are similar
to network firewalls, except that they focus on the application lay-
er (layer 7 in the OSI model) and can block traffic based on known
vulnerabilities if configured properly. Firewalls are either in soft-
ware or appliance formats. WAFs can be good for cases where
companies don’t have the time to fix all the vulnerabilities in time.
However, WAFs do require proper configuration of rules or they
might have false positives and block good traffic, which can be
devastating for a business.

Source: Cenzic Application Security Trends Report – Q3-Q4, 2008

Demystifying Web Application Security Landscape
by Mandeep Khera

34 www.securityacts.com No 1 October 2009

Mandeep Khera has over 24 years of diversified experience in marketing,
engineering, business development, sales, customer services, finance and
general management.

Mandeep has been with Cenzic, an application security software company,
since 2003 as the Chief Marketing Officer driving the strategic, product, and
outbound marketing functions. Prior to joining Cenzic, Mandeep managed
marketing functions for VeriSign’s Managed Security Services product line,
as the Vice-President of Marketing for Maaya, a Web-Services Software com-
pany, as Vice-President of Worldwide Marketing for UCMS, an eCRM software
company and as the Vice-President of Marketing and Engineering for Embar-
cadero Systems Corporation, a logistics management software company.

Previously he was with Hewlett-Packard for 11 eleven years in various posi-
tions including as a general manager of a software business unit.

Mandeep is a graduate of Harvard Business School’s Leading Product
Development program and Northwestern University’s Executive Development
Program. He holds a Bachelor of Commerce with honors from New Delhi.

All the other technologies that are touted as Web application security
such as encryption, identity management, PKI certificates, etc. are nec-
essary technologies in their own right, but should not be confused as
Web application security.

Besides technology, organizations need to make sure that they have
good processes in place and that proper accountability of application
security is clear throughout the enterprise. If InfoSec is responsible for
testing for vulnerabilities, clear rules need to be established for devel-
opers to fix the vulnerabilities based on priorities. Web application se-
curity is not a one time event, and it needs to have an ongoing focus
with continuous testing and remediation.

Even with all the hype around Web application security and the various
solutions available, most companies are not doing anything or enough
about it. Besides pure inertia, there are many myths that are holding
companies back from moving forward on these initiatives. Here are the
10 common myths:

I have SSL, so my Web sites are secure•	 : Well, Secure Socket Layer
(SSL) has its place in helping provide some protection to the con-
sumers while they are conducting transactions online. However,
it does nothing to protect hackers from hacking into Web sites.
SSL is a good technology that assures the consumer that the server
he/she is connecting to is a valid server, and it encrypts the com-
munication between the browser and the server. So, the SSL lock
symbols on most of the sites can be misleading.

I have a network firewall, so that should be enough•	 : Network fire-
walls were created to keep the bad guys out at the network layer.
They were not designed to protect traffic at the Web application
layer. NW Firewalls do not validate user inputs to an HTML ap-
plication, and they don’t detect maliciously modified parameters
in a URL request.

I have an Intrusion Prevention System, so that should prevent me •	
from all intrusions: IDS and IPS are good devices, but again at
the network layer. These devices were created to block access and
do not understand injections at the Web application level. Hackers
have access to the same forms and fields that consumers do, and
unless you use IPS to block all your Web traffic, it’s not going to
help you thwart hacker attacks.

My data is encrypted, so why should I care if someone attacks•	 :
While data encryption is a solid best practice to follow, it’s not
enough to protect Web applications. Once hackers come in through
the Web site and are able to exploit the application, they can access
the data and decrypt later.

I don’t have any public-facing Web applications•	 : Insider threats

are bigger than ever. Even if you don’t have external-facing ap-
plications, you still have to protect your employee data on internal
applications.

I can test my Web application once a year and I’ll be fine•	 : Every
month there are 400+ new application-related vulnerabilities and
hackers know about them. Also, every time you make any change
to a Web application, you have to make sure that there are no new
vulnerabilities. Application testing has to be a continuous process
with at least monthly if not weekly testing.

I have never been hacked, so I am fine•	 : First of all, gone are the
days when hackers used to hack to gain fame. Now, most Web
hacking is done by organized criminals and in some cases by gov-
ernment-sponsored organizations. These guys don’t want you to
know that you are being hacked. There are more and more com-
panies who are finding out that they were being hacked for over a
year before they discovered the attacks. Also, do you really want
to take a chance to see if you get hacked?

I only have commercial applications from large vendors, so it’s not •	
my problem: You are responsible for all the customer and employ-
ee information, even if you didn’t create the application. You need
to make sure that you test all the applications as well as any plug-
ins that you wrote for those commercial applications. Notify your
commercial vendor and put pressure on them to release a patch so
you have recourse in case of a breach.

I have never been audited•	 – You have to protect your Web applica-
tions to secure your most important asset – customer information.
If your applications are secure, you’ll pass the audit and comply
with regulations. The reverse is not necessarily true.

Application Security is painful to implement•	 – Although it’s more
difficult to secure Web applications than the network layer and
desktops, there are many easy solutions to get your process jump-
started. Like all initiatives, once you get going, the road gets less
bumpy.

All indications are that cyber attacks at the Web application layer will
continue to rise in the coming months and years. With 80% of vulnera-
bilities in Web applications and over 75% of attacks happening through
the Web sites, the question is not IF you will get attacked, the question
is WHEN you will get attacked.

There are a lot of good resources available to help you get going with
your initiatives including OWASP, SANS, and many other free Webi-
nars from various vendors like Cenzic. There’s a lot of help available to
move you along the process. You need to take that first step.

35www.securityacts.comNo 1 October 2009

© iStockphoto.com/calvio

Security tests are an important part of the risk management process
and executives realize the benefits of an independent security test: It
introduces a neutral view on the target and can improve security when
the proposed sensible measures are successfully applied. But there are
often also questions to answer after such an audit.

How secure is the target, and are there aspects that have not been tested?
How much has our security improved since the last test? How does our
security compare to other companies in our industry? This article is
a brief introduction into the Open Source Security Testing Methodol-
ogy Manual (OSSTMM), which can answer these and other follow-up
questions.

OSSTMM is a freely available manual that provides a methodology
for a thorough security test of physical, human (processes) and com-
munication systems. A core aspect are the security metrics – the Risk
Assessment Values (RAV) – which express the final security level of
the tested system as a numerical value. The current release candidate of
OSSTMM 3.0 is an approximately 150-page document and is a com-
plete re-write from the 2.X version series incorporating the results of
the last 6 years of research.

The main purpose of the OSSTMM is to provide a scientific method-
ology for the accurate characterization of operational security and is
adaptable for penetration tests, ethical hacking, security assessments
and so forth. In the EU-sponsored project, Open TC, it became the stan-

dard for testing and measuring trusted computing systems. Most of all,
an OSSTMM compliant test defines the target clearly, and results are
reproducible, something unusual in the current methods of ethical hack-
ing and penetration testing.

Preparation and Testing
Before the test can actually start, the assets that have to be secured must
be defined. The protection mechanism for the assets are the targets to
test. The engagement zone is the area around the assets, the test scope is
everything needed to keep the assets operational, for instance, processes
or network protocols. The test vector defines the interaction points of
the scope. For instance, a DMZ may be tested from the internet or from
the LAN as well – with obviously different results. Then, the testing
channels have to be defined. Our example DMZ may be tested not only
on the communication layer but on the process layer as well (e.g. patch-
ing process).

The test type defines the knowledge about the target and the test. Com-
mon known testing types are black box and white box; the OSSTMM,
however, distinguishes six types, each detailing different results. The
rules of engagement are protecting the customer and the tester on legal,
ethical and procedural aspects.

When all the above has been defined well, it is clear which tests in the
OSSTMM have to be performed on the scope. OSSTMM tests define

Classification Description

Vulnerability is the flaw or error that:
(a) denies access to assets for authorized people or processes,
(b) allows for privileged access to assets to unauthorized people or processes, or
(c) allows unauthorized people or processes to hide assets or themselves within the scope

Weakness is the flaw or error that disrupts, reduces, abuses, or nullifies specifically the effects of the
five interactivity controls: authentication, indemnification, resistance, subjugation, and continuity.

Concern is the flaw or error that disrupts, reduces, abuses, or nullifies the effects of the flow or
execution of the five process controls: non-repudiation, confidentiality, privacy, integrity, and alarm.

Exposure is an unjustifiable action, flaw, or error that provides direct or indirect visibility of targets or
assets within the chosen scope channel.

Anomaly is any unidentifiable or unknown element which has not been controlled and cannot be
accounted for in normal operations.

Security Testing by Methodology: the OSSTMM
by Simon Wepfer & Pete Herzog

36 www.securityacts.com No 1 October 2009

Simon Wepfer is COO at OneConsult.

Pete Herzog is founder of the OSSTMM and Director of ISECOM.

only what is to be done, but do not dictate any tools. One test for data
networks for example is requesting that server uptime has to be veri-
fied to latest vulnerabilities and patch releases. Another example is that
responses to UDP packets with bad checksums to a collection of ports
have to be verified. The tools to use and how to use them is left up to
the tester.

An OSSTMM compliant test is much more than running an automated
vulnerability scanner and printing the report. It relies on the tester’s
in-depth knowledge and experience, and on human intelligence for in-
terpreting the results. This does not mean that automated tools will not
be used at all, but they will be used as what they are: just a tool without
real intelligence.

Risk Assessment Value
Once a risk is detected and verified, it has to be categorized. OSSTMM
is naming these limitations; the inability of protection mechanisms to
work correctly, see table

OSSTMM knows five „risk“ classifications
The limitations are one of the three factors for calculating the final
RAV. The operational security is a second one, derived from visibility

(a means of calculating opportunity for an attack), access (counting the
interactive access points) and trust (fall-back to unauthenticated access
to trusted systems). The third factor for calculating the RAV are the con-
trols implemented for each point identified in the operational security
section. Controls are grouped in class A (authentication, indemnifica-
tion, subjugation, continuity and resilience) and class B (non-repudia-
tion, confidentiality, privacy, integrity and alarm).

Certification
ISECOM (Institute for Security and Open Methodologies) offers sever-
al OSSTMM-specific certification and training schemes. The ISECOM
Licensed Auditor (ILA) program provides quality assurance and sup-
port for obtaining OSSTMM certified audits from a properly accredited
auditing company. OPST (OSSTMM Professional Security Tester) and
OPSA (... Analyst) is a certification for persons. Additional information
may be found on http://www.isecom.org/.

37www.securityacts.comNo 1 October 2009

As the importance of security continues to
dawn on the Software Industry 2.0, organiza-
tions of all sizes are trying to discover what
constitutes software security “due care” for
their customers. This brief paper will review
key principles surrounding security in the de-
velopment lifecycle (SDL), covering econom-
ic drivers, industry benchmarks (or the lack
thereof), a prototypical SDL model, and what
we’ve seen work/not work with real-world
SDL implementations.

Few question that software occupies an in-
creasingly central role in our everyday lives.
From computer operating systems and appli-
cations, to mobile phones, television, the In-
ternet, VoIP, GPS navigation, software-driven
medical systems, air traffic control, the electric
grid, and so on, human activity (and perhaps
even human existence itself) has come to rely
heavily on software.

But is that reliance justified? As more and more
of our lives becomes digitized, and headlines

have begun to trumpet the growth of malicious
hacking and other incidents of cyber abuse,
deep questions surrounding the confidentiality,
integrity, and availability1 of digital data have
been raised. Are the risks underlying this brave
new world greater than the rewards?

In parallel, software development organiza-
tions of all sizes are trying to discover how
to protect their end users from unreasonable
risks. Of course, this raises yet another ques-
tion: what constitutes “reasonable”? Put an-
other way, what is the standard of software
security “due care”?

To date, the software industry has adopted the
following fundamental approaches to estab-
lishing this standard:

1	 Confidentiality, integrity, and availability
(CIA) are often cited as the defining properties of
information security. Some authorities also include a
fourth “A” for “accountability,” typically understood to
refer to the keeping of tamper-resistant activity logs to
provide non-repudiation.

Ignore1.	

React2.	

Prevent3.	

Let’s examine each of these approaches briefly
to set the stage for a deeper discussion of se-
curity in the software development lifecycle
(SDL).

Ignorance is Bliss
The dirty little non-secret of the technology
industry is that few software development-
oriented companies are doing anything serious
about security. Recent surveys suggest that,
despite some uptake of outsourcing and tools,
most firms do not allocate significant budget
or headcount for application security outside
of standard operational IT security processes
[1]. Although some in the information security
industry would bristle at the implication, the
question remains: Is ignoring the problem sim-
ply good risk management?

© iStockphoto.com/alexsl

Fi
gu

re
 1

: S
of

tw
ar

e v
ul

ne
ra

bi
lit

ie
s r

el
ea

se
d

be
tw

ee
n

19
97

 a
nd

20

09
 (e

xt
ra

po
la

te
d)

, c
ou

rte
sy

 of
 N

at
io

na
l V

ul
ne

ra
bi

lit
y D

at
ab

as
e

Application Security Fundamentals
by Joel Scambray

38 www.securityacts.com No 1 October 2009

Data on security incidents or breaches has his-
torically not been tracked systematically (with
some recent exceptions, albeit focused on op-
erational breaches rather than purely software
vulnerability-related [2]). There is good news
and bad news in this recent data: while only
6 out of 90 confirmed breaches (derived from
over 150 cases) “…resulted from an attack ex-
ploiting a patchable vulnerability… the bulk
of attacks continues to target applications and
services rather than the operating systems or
platforms on which they run.” (ibid) So, if
you’re a major operating system vendor, take
heart, but if you’re writing custom application
code, you’re increasingly the target of attack.

Another quasi-informative dataset is the Na-
tional Vulnerability Database (NVD), which
tracks advisories on software vendor bulletins
[3]. Figure 1 shows the raw count of vulner-
abilities tracked in NVD, across all vendors
and products, including software flaws (not
configuration flaws), across all sources, from
1997 to 2009.

Clearly, the number of visible vulnerabilities
is on the rise. Presumptively, based on unre-
lated studies showing software sales to be
dominated by a handful of vendors, most of
these vulnerabilities emanate from the same
group of vendors. (We haven’t done research
confirming this.) Given all this activity, does
it make sense simply to “vanish in the noise”
if you are a small or medium sized software
shop, and simply invest minimally in, say, out-
sourced professional security review during
the release cycle? What is the return on invest-
ment (ROI) for security in the development
lifecycle? We’ll return to this question later,
but will simply note at this point that there is a
robust world-wide research community wait-
ing for you out there.

To close this discussion of the merits of ignor-
ing the software security problem, although it
seems counterintuitive to assert positive out-
comes from such a mindset, we’ve found min-
imal data to quantify the penalties of such an
approach for small- to mid-sized software de-
velopment efforts. Larger-scale development
organizations with widely-deployed products
are a different story, and anecdotal evidence
exists to support investment in security, a topic
we’ll return to later. Next, we’ll examine the
other two postures, reactive and preventive.

React vs. Prevent
Many software firms have observed real-
world security quality improvements resulting
from external security review, and have hired
penetration testers to assess their products,
typically keeping the results private and selec-
tively fixing some or all of the vulnerabilities.
Although these practices can be laudable when
performed in conjunction with other measures
to be discussed momentarily, simply finding
and fixing bugs iteratively between releases
is not necessarily the most efficient way to
increase code security quality. In fact, it’s ar-
guably less efficient than “learning to fish”, in
other words adapting a culture of prevention
and the processes & technology to support it.

This is the heart of the justification for SDL.
“Baking security in” rather than “bolting it
on” in theory leads to better outcomes for all
involved, including the development organiza-
tion and its customers. Next, we’ll describe in
more detail the components of SDL and how it
drives these outcomes.

SDL History and Philosophy
Of course, the notion of “baking security in”
has been around for some time. Some of the
“classic” antecedents of security in the devel-
opment lifecycle include:

NIST SP 800-64 [4]•	

BS7799/ISO17799/27001-2 [5]•	

OCTAVE [6]•	

In our opinion, ISO 17799 Sec 10 and ISO
27002 Sec 12 remain classics from an SDL
policy perspective, including such funda-
mentals as separation of test and production
environments, input/output validation, cryp-
tography best practices, transaction integrity/
non-repudiation, and so on.

More recent iterations of security in the devel-
opment lifecycle frameworks include:

Microsoft SDL [7]•	

CLASP [8]•	

BSI-MM [9]•	

OpenSAMM [10] •	

Microsoft’s SDL is among the most widely
recognized currently, although there has been
substantial recent attention for the other frame-
works in this list (which share some overlaps
in pedigree [11]).

SDL Principles & Framework
Obviously, there are a number of approaches
to security in the development lifecycle, going
back several years. It is therefore more real-
istic to think of SDL as a framework, or set
of principles, that specific organizations can
adapt and customize to their own unique pur-
poses. Even Microsoft’s SDL documents refer
to their “implementation” of SDL. Below we
attempt to summarize some of the high-level
principles of SDL that are common to many of
the above-mentioned frameworks:

Distribute the work of assessment and re-1.	
mediation, especially to the development
team

Independent (of the development team) 2.	
reviews at key milestones

Provide relevant training and re-usable 3.	
guidance (checklists)

Strive for quantitative risk management, 4.	
and set thresholds

Leverage automation5.	

The first point articulates the overall strategy
of SDL: accountability for the security qual-
ity of software needs to reside primarily with
the developers of the software. This creates
incentives to make continuous improvements

to security quality in the long term. Alterna-
tive accountability models, such as where the
internal corporate security team takes respon-
sibility for software security, don’t scale well
in our experience because of conflicting incen-
tives between the business (release feature-rich
software to customers) and risk management
interests (ensure that security quality is high).

Of course, security assurance cannot be out-
sourced entirely to the development function,
as that creates a “fox guarding the chicken
coop” situation (i.e. lack of appropriate seg-
regation of duties). So, point 2 notes that re-
views conducted by (or overseen by) parties
independent of the development team are
necessary at key milestones. For example, the
corporate security team could conduct pre-re-
lease penetration testing independently of the
development team and track the remediation
of identified issues.

Point 3 is perhaps self-evident, but neverthe-
less important: people have a hard time doing
the right thing if they aren’t told what’s the
right thing to do. Development team security
training (including program managers, testers,
and managers) is thus an important compo-
nent of any SDL implementation. Training
programs should provide job-relevant curri-
cula, track comprehension (ideally linked to
application on-the-job), and be supported by
re-usable guidance, code libraries/routines,
and checklists that developers can easily ac-
cess on the job to enforce good behavior. Ap-
plication security training could be the topic
of an entirely separate discussion, so we’ll say
little else about it going forward other than to
reiterate its importance to the success of the
overall SDL effort.

Point 4 acknowledges that information secu-
rity practices continue to evolve towards more
mature, quantitative risk management ap-
proaches. These same principles are ideal to
apply to software security assurance as well.
For example, Microsoft’s DREAD [12] risk
rating system strives to quantify the severity
of software vulnerabilities, and thus define the
priority of remediation efforts. (DREAD is
somewhat proprietary to Microsoft, but is il-
lustrative of the concept of quantitative assess-
ment; other risk quantification systems include
CVSS2 [13], FAIR [14], and FMEA [15].)
Beyond just the scoring system itself, it is im-
portant to establish thresholds for prioritiza-
tion, or to put it colloquially, a “bug bar.” The
bug bar essentially defines for an organization
the thresholds at which work will be done to
remediate a flaw. It can be immensely help-
ful to define thoughtful thresholds like this in
collaboration with all stakeholders in advance
of performing assessments, to avoid disagree-
ments over how to remediate flaws (resulting
in delayed release, unacceptably risky flaws in
released code, or both).

Point 5 needs little explanation. Automation
yields greater efficiency, and SDL is no excep-
tion. Some key areas with high potential for
improvement through automation include:

Security code review (although the accu-•	

39www.securityacts.comNo 1 October 2009

racy and relevance of output from com-
mon tools remains suspect)

Fuzz testing (to be defined later)•	

SDL process automation, e.g. self-help •	
web portals for workflow management

We’ve included a brief overview of applica-
tion security tools at the end of this article.

Pitfalls
We’ve covered some key SDL principles that
can help improve the chance of good out-
comes. Are there any practices that should be
avoided?

Anecdotally, one of the main reasons for fail-
ure of an SDL initiative is lack of focus on
benefits to the organization, and by extension,
its customers. Many organizations approach
SDL assuming that the implied virtues of more
secure software will simply make it accept-
able to all stakeholders. In addition, there is
historical disagreement around whether focus-
ing on return on investment (ROI) for secu-
rity is worthwhile or achievable (we believe
economic justification is imperative, and will
return to this concept later). To counteract this
tendency, we recommend developing a good
“scouting report” on all stakeholders (especial-
ly customers!), how they perceive SDL, their
key objectives, and expected performance in-
dicators. Often, this basic research can point
to simple and easily implemented initial steps
that result in easy wins, good momentum, and
a strong head start towards a sustainable SDL
program.

Culture shock can also torpedo SDL imple-
mentations. The culture of software develop-
ment generally resists structure and discipline,
and specific group dynamics can present even
further challenges. Often, security is perceived
from the start as an outsider, and the various
behavioral changes proposed within the SDL
initiative are thus viewed with suspicion at the
outset. Be prepared to adapt your specific SDL
implementation to the general and specific cul-
ture of development within your organization
to bypass culture shock and outsider percep-
tion out of the gate.

Those chartered with initiating SDL are of-
ten tempted to set unrealistic expectations for
SDL outcomes in order to address the outsider

perception issue. Obviously, this is not recom-
mended. Software development cultures are
often focused tightly on schedule and resource
allocation, and individuals
who mismanage those two
fundamentals often sacri-
fice substantial reputational
capital that is very difficult
to re-acquire for subse-
quent release cycles.

Lack of alignment with
other security initiatives
can also introduce “audit
fatigue” amongst develop-
ers, who typically bristle
at being interrupted mul-
tiple times for what they
perceive is the same issue.
One of the typical exam-
ples here is web develop-
ment shops that have to
comply with PCI DSS. [16]
They are faced with complying with both SDL
and PCI-related security initiatives separately
if those programs are not well-coordinated.

Finally, and perhaps most importantly, organi-
zational governance is often neglected in the
design of SDL programs. The common wis-
dom is to “get executive buy-in” for initiatives
of this nature, and
this is of course
important. How-
ever, development
cultures are more
often driven by
“bottom-up” per-
ceptions, so it’s
important to con-
sider lobbying of
all stakeholders
early and often.

SDL Implemen-
tation Examples
What does an SDL
implementat ion
look like in prac-
tice? As we’ve pro-
posed, it should be
well-aligned with
the existing de-
velopment rhythm

and culture. Figure 2 shows a mock develop-
ment lifecycle for a large enterprise.

Beginning with the lifecycle in Figure 2 as a
baseline, in Figure 3 we overlay some com-
mon SDL milestones. This is one possible
implementation for a large-scale organization
with substantial resources.

It’s important to note how Figure 3 aligns with
the SDL principles we articulated earlier:

Principle Implementation in Figure 3

Distribute the work of assessment and reme-
diation, especially to the development team

A Security Liaison is assigned at project inception, who will be accountable for manag-
ing security workflow throughout. 2

Independent review at key milestones The red lines indicate milestones where independent review can occur. Note that
these are closely aligned to existing development process gates.

Provide relevant training and re-usable guid-
ance (checklists)

Training is an SDL gate that occurs early in the cycle. 3 Also, the “Build Standards” gate
at the “Test” milestone illustrates an opportunity to provide re-usable checklists.

Strive for quantitative risk management, and
set thresholds

The iterative nature of the overlay cycle provides multiple opportunities to check met-
rics (such as DREAD score mitigation) during the current and in future releases.

Leverage automation A number of gates could require automated checks, such as the “Security Testing” and
code review milestones.

Figure 2: A mock large enterprise development lifecycle

Figure 3: A sample SDL implementation overlaid on top of the previously introduced
mock development cycle.

2	 Note that the security liaison manages workflow, not security outcomes, such as code security quality and other metrics. Ultimately, the development team lead-
ership/executives are accountable for outcomes.
3	 In practice, the number of developers who receive required training fluctuates between and within cycles, but the idea here is to enforce training early in a given
cycle to ensure people have the training they require to do their jobs.

40 www.securityacts.com No 1 October 2009

Although Figures 2 and 3 are illustrative of
how SDL principles might be implemented on
a large scale, we’ve stressed the importance of
starting small with SDL and iteratively grow-
ing the program to a scale that is sustainable
for a given organization. Figure 4 provides an
example of a smaller-scale SDL implementa-
tion based on what we assert are the minimum
components for success.

Note that many of the enterprise-scale SDL
checkpoints (shown in Figure 3) have been
eliminated in the example shown in Figure
4. The boxes highlighted in red in Figure 4
comprise an even more minimal SDL imple-
mentation made up of Design Review, Threat
Modeling, and Code Review (with optional
Penetration/Fuzz Testing). The terms shown in
Figure 4 are defined in the Glossary at the end
of this article.

Development Infrastructure
It’s worthwhile to pause for a moment to high-
light the importance of basic fundamental soft-
ware development hygiene. Of course, many
opinions exist (especially within development
communities) about the exact meaning of
“basic software development fundamentals,”
and we’re not interested in starting such a de-
bate here. Our primary point is that much of
the theory and practice of SDL depend upon
certain fundamentals being in place, and most
SDL initiatives will not be successful without
at least some structure to which it can be an-
chored. Some of the common key enablers of
successful SDL implementations are listed in
Table 1.

What About Alternative Programming
Models?

The topic of software development fundamen-
tals raises a popular question: Can SDL be
applied successfully to iterative/unstructured
Agile programming methods like Scrum and
Extreme Programming? Absolutely, [17] but
there is a point at which a lack of structure or too
much “adaptive-ness” can hamper SDL. SDL

is based
on the
p remise
that a
minimal
level of
structure
exists to
w h i c h
systemat-
ic evalu-
ations of
securi ty
q u a l i t y
can be an-
c h o r e d .
If there

is no structure to which anything can be an-
chored, then SDL will likely be challenging to
implement. This again highlights the challenge
of cultural integration for those without sub-
stantial development experience (e.g. security
professionals attempting to implement SDL):
it can be hard to differentiate natural resistance
to change from active attempts to cover up an
overall poorly managed existing development
effort.

SDL ROI
To this point, we’ve discussed the “what” and
some of the “how” of SDL. Before conclud-
ing, we’ll take a step back and briefly survey
the “why.” Our basic premise is that, at least
in business scenarios, the key driver of SDL
should be economics, with emphasis on the
“should be”. Find-
ing and interpreting
data to support this
contention is chal-
lenging.

Generally, there is a
lack of systemic em-
pirical evidence sup-
porting measurable
economic outcomes
following implemen-
tation of SDL. Most
studies to date have

focused on hard operation costs yielding in-
tangible benefits. For example:

Savings-to-cost ratios ranging from •	
break-even to 8 or 9 times [18]

Average loss of 0.76% market value when •	
a vulnerability is disclosed [19]

Return on investment equated to 21% •	
[20]

Other studies have shown the value of good
design, user education, and automated re-
sponse technology over finding and fixing
bugs. [21, 21]

Microsoft has published data showing a sharp
reduction in security bulletins published from
Windows 2000 Server to Windows Server
2003. [23] Combining this data with separate
claims by Microsoft that a security bulletin
costs the company approximately $100,000 (in
2002 dollars) [24], one can impute that Micro-
soft saved approximately $3.7M due to their
“Secure Windows Initiative” push that was
one of the primary progenitors of their brand
of SDL. Of course, this does not quantify tan-
gible investment in SDL beforehand (let alone
even as a percentage of overall spend); it just
illustrates benefits in terms of hypothetically
realized savings from un-issued bulletins.

Admittedly, this brief review of economic data
in support of SDL has not done justice to the
topic. Our sense based on anecdotal experi-
ence is that, like most things, the ideal risk/
reward balance is not one-size-fits-all, but is
rather best gleaned from experimentation and
keen focus on tying SDL metrics to economic
outcomes early and often. To end with one fi-
nal piece of guidance on quantitative data sup-
porting SDL, we paraphrase the Pareto Prin-
ciple: Invest more in finding the “vital few”
issues that cause the vast bulk of security vul-
nerabilities. We’ve provided one last table to
help illustrate this point:

Figure 4: A light-weight SDL implementation example.

Fundamental Dev Practice Assists SDL By

Consistent test, build environments Separating test and production data, ensuring
expected run-time parameters

Concurrent versions system (CVS) Enforcing known-state versioning and providing
reversion capability

Defect management system Provides a central repository for managing and
measuring defect reduction

Reporting Provides consistent communication of data to ap-
propriate decision-makers

Table 1: Development practice fundamentals that enable SDL.

Budget Quantity
Found

Quality
Impact

React
Find & fix bugs•	
Bolt-on•	

20% 80% 20%

Prevent
Improve dev •	
practices
Baked-in•	

80% 20% 80%

Table 2: Planning for SDL should focus on finding the “vital few” issues that cause the
preponderance of security vulnerabilities.

41www.securityacts.comNo 1 October 2009

Joel Scambray, CISSP, is co-founder and CEO of Consciere, provider of
strategic security advisory services. He has assisted organizations ranging
from small startups to Microsoft Corp. address information security chal-
lenges and opportunities for over a dozen years, in diverse roles including
consultant, corporate leader, entrepreneur, and co-author of the Hacking
Exposed book series.
The author wishes to acknowledge important contributions to this article
from Andre Gironda, Birgit Lahti, and Kevin Rich.

- the tool for test case design
and test data generation

www.casemaker.eu

©
 P

ito
pi

a
/

Kl
au

s-
Pe

te
r A

dl
er

, 2
00

7

42 www.securityacts.com No 1 October 2009

Managing information security has become
more complex and the numbers of internal and
external security threats are increasing. Con-
ducting an information security audit makes
good business sense to assess threats and
security risks to information systems, to de-
velop risk mitigation strategies and to ensure
that identified security risks remain within ac-
ceptable levels. The purpose of this article is
to provide guidance on how to conduct basic
information security audits as part of the in-
ternal audit programme.

Introduction
Every business relies on the continuous and
safe operation of information technology to
maximize effective achievement of organiza-
tional goals. Today’s organizations face a num-
ber of challenges in managing information se-
curity. Software vulnerabilities, unauthorized
intrusions, increased spam delivery, infection
of systems and data by viruses, worms or
Trojan horses (backdoors), phishing attacks,
denial of service (DoS) attacks, computer-as-
sisted fraud, website defacements, economic
espionage, laptop or mobile hardware theft,
insider threats, non-compliance (e.g. security
policy not followed by employees) and other
threats to information security are just a few of
many challenges for organizations. It is very
important to note that information security is a
continuous management process that requires
ongoing attention and a well established risk
management process.

To protect valuable IT assets such as comput-
ers and laptops, servers, networks, and sensi-
tive data and to detect security risks/threats,
companies should conduct regular information
security audits. However, many companies ig-
nore this important fact and do not perform
their own basic information security audits
for various reasons, such as lack of qualified

auditors, lack of information security aware-
ness and communication by top management,
information security requirements and pro-
cedures are not established, costs to involve/
hire IT security specialists being too high, etc.
Another problem is that most internal auditors
and IT employees are not familiar with infor-
mation security audits.

Organizations that have implemented a qual-
ity management system in conformance with
international standards (e.g. ISO 9001, ISO
13485, etc) can take advantage from internal
audits when performing basic information se-
curity audits. The international quality man-
agement standards ISO 9001:2008 and ISO
13485:2003 require conducting internal audits
(clause 8.2.2).

Internal audits should be conducted at defined
intervals by independent and skilled internal
auditors for management review and internal
purposes. All elements of a quality manage-
ment system (e.g. design control, process and
production controls, corrective and preventive
actions, software, management review, docu-
ment and record control, etc) should be au-
dited. The results of the internal audit activity
should lead to continuous improvements, pro-
cess innovations, risk mitigation, corrective
and/or preventive actions, corrective action
closures, lessons learned, observations, etc.

ISMS

ISO/IEC 27001:2005 is an information securi-
ty management framework which helps orga-
nizations to establish a documented informa-
tion security management system (ISMS). The
purpose of ISMS is to ensure adequate and ap-
propriate security controls that adequately pro-
tect information assets. ISO/IEC 27001:2005
standard can be used to assess compliance
of the ISMS by internal and external parties.

Clause 6 of this standard requires performing
internal ISMS audits at planned intervals (at
least once a year) to determine whether secu-
rity objectives, controls, processes and proce-
dures of the ISMS are compliant, efficient and
executed as planned.

Internal ISMS audits shall be conducted by in-
dependent, competent and adequately trained
auditors. Internal information security audi-
tors should have the following knowledge
and skills: communication and report writing
skills, sufficient knowledge needed to perform
technical security testing (i.e. knowledge in
utilizing the penetration tools selected to de-
tect vulnerabilities), working knowledge of
application programming, network engineer-
ing skills, system administration skills, risk
management skills, knowledge to interpret
the requirements of information security stan-
dards in the context of an ISMS audit, skills to
conduct an internal audit in accordance with
ISO 19011:2002, etc.

The three core elements of information secu-
rity (also known as the CIA triad) according to
ISO/IEC 27001:2005 are:

Confidentiality•	 of information – protect-
ing access to it from unauthorized users
or systems.

Integrity•	 of information – safeguard-
ing the accuracy and completeness of
information and processing methods.
Examples of integrity incidents are: an
unauthorized user deletes a record from a
database, changes a statement in a source
code, executes an application, etc.

Availability•	 of information – ensuring
information and associated assets are
available to authorized users or systems
when requested or needed. Examples of
common availability incidents are: autho-

How to conduct basic information security audits?
by Nadica Hrgarek

43www.securityacts.comNo 1 October 2009

rized users are not able to access a web-
site because of a DoS attack (e.g. ping of
death, SYN flooding), loss of data pro-
cessing capabilities as a result of natural
disasters (e.g. fire, flood, earthquake, hur-
ricane, etc) or human actions (e.g. bombs
or strikes).

ISO/IEC 27002:2005 standard identifies 11 do-
main areas, 39 control objectives and 133 best
practice security controls which help organize
security policy and procedures. The eleven
domain areas of ISO/IEC 27002:2005 are: (1)
information security policy, (2) organizational
security, (3) asset classification, (4) personnel/
human resources security, (5) physical and en-
vironmental security, (6) communications and
operations management, (7) access control, (8)
information systems acquisition, development
and maintenance, (9) information security in-
cident management, (10) business continuity
management, and (11) compliance with legal
requirements.

Information security audit process
Security of information, computer systems,
networks and the people who manage them
are the focus of the information security au-
dits. An information security audit is usually
performed by competent auditors through in-
terviews, vulnerability assessments, exami-
nations of OS settings, analyses of network
shares and historical data to identify all pos-
sible security risks. The information security
audit should be built on past audit results to
help refine the security policy and correct de-
ficiencies which are discovered through the
audit process. Table 2 lists some sample key
questions that any information security audit
should address to protect information assets
against manipulation and destruction, to pre-
serve availability, confidentiality and integrity
of information.

Penetration tests should be complemented
with information security audits and other se-
curity measures. These tests simulate an attack
on an organization’s systems and network;
check if there are any improperly configured
systems or other vulnerable systems. Penetra-
tion testing and other security tools (Table 3)
allow auditors to discover the vulnerabilities.
However, it is important to emphasize that
some penetration testing tools can reproduce
real attacks, which could cause systems crash-
ing and compromise computer systems or
network if they are not protected. Therefore,
before conducting any penetration test on sys-
tems or networks, it is recommended to have
consent from management. If internal resourc-
es are being used to perform penetration tests,
those resources shall be independent and expe-
rienced penetration testers.

The following websites provide a review and
brief description of currently available vulner-
ability assessment tools: www.securitywizard-
ry.com, sectools.org.

Company assets to consider when conducting
information security audits may include, but
are not limited to:

information assets (data files, user manu-•	
als, product specifications, procedures
and work instructions),

paper documents (contracts, procedures, •	
guidelines),

software assets (application software, •	
system software, source code),

hardware assets (computers, laptops, web •	
servers, routers and networking equip-
ment, printers, company smartphones/
PDAs, scanners),

personnel assets (users, administrators, •	
developers),

service assets,•	

location assets.•	

The internal information security audit usually
contains the following audit activities:

Planning and preparing the audit•	 – Ap-
pointing the audit team leader; defining
audit objectives, scope and criteria; se-
lecting an appropriate audit team; con-
ducting a document review prior to the
on-site audit activities (e.g. security poli-
cy and other applicable procedures, stan-
dards); preparing the audit plan; prepar-
ing work documents (e.g. audit checklist,
audit sampling plans, forms for recording
information); selecting appropriate audit
tools and environment.

Conducting the on-site audit•	 – Conduct-
ing the opening meeting; review of docu-
mentation (e.g. hardware/software inven-
tory, network architecture, incident logs,
user account policy, password policy,
backup policy, audit trails, etc); conduct-
ing interviews; review of location and en-
vironment controls (e.g. server room, fire
extinguisher, fire protection door, etc);
conducting technical assessment (e.g.
running static and dynamic tools, firewall
testing, checking system logs, checking
system against known vulnerabilities,
searching for privileged programs, check-
ing all configuration files of running pro-
cesses, checking extra network services,
code review of non-standard programs,
using social engineering techniques, etc);
generating the audit findings; preparing
the audit conclusions; conducting the
closing meeting.

Generating, approving and distributing •	
the audit report.

Conducting audit follow-up activities•	 –
Verification of completion and effective-
ness of corrective/preventive actions aris-
ing from the internal audit.

An audit report should provide a complete, ac-
curate and concise record of the audit. It should
be prepared by the lead auditor and signed by
the audit team members. Audit reports increase
top management awareness of security issues
and assist top management in decision-making
processes. An audit report usually includes the
following information:

Audit reference number,•	

Date of audit,•	

Identification of lead auditor and audit •	
team members,

Executive summary,•	

Audit criteria,•	

Audit findings (e.g. non-conformities, •	
observations),

Recommendations for the audit findings •	
(i.e. corrective, preventive or improve-
ment actions),

Audit conclusions,•	

Appendices.•	

Conclusion
There are many benefits in performing in-
formation security audits: ensuring business
continuity, minimizing business damage (e.g.
preventing financial and availability losses,
avoiding image loss), improved enterprise se-
curity, better risk management process, gain-
ing deeper knowledge of different aspects of
security, measuring compliance with current
security policies and procedures, etc. Security
audits should be performed at regular intervals
or after any significant infrastructure or soft-
ware changes.

Due to the global economic downturn, IT se-
curity budgets are tight and top management
needs to understand how information security
audits help to detect security threats, improve
safeguarding of assets and ultimately decrease
costs. Top management support and commit-
ment to the information security is one of the
key success factors in any effective informa-
tion security project.

To obtain perfect security is not possible, and
therefore the costs of information security
should be commensurate with the business
needs and security risks of any computer sys-
tem.

44 www.securityacts.com No 1 October 2009

Tables and Frames >

Number Title

ISO/IEC 13335-1:2004 Information technology – Security techniques – Management of information and communications technology
security – Part 1: Concepts and models for information and communications technology security management

ISO/IEC 18028-1:2006 Information technology – Security techniques – IT network security – Part 1: Network security management
ISO/IEC 18028-2:2006 Information technology – Security techniques – IT network security – Part 2: Network security management
ISO/IEC 18028-3:2005 Information technology – Security techniques – IT network security – Part 3: Securing communications be-

tween networks using security gateways
ISO/IEC 18028-4:2005 Information technology – Security techniques – IT network security – Part 4: Securing remote access
ISO/IEC 18028-5:2006 Information technology – Security techniques – IT network security – Part 5: Securing communications across

networks using virtual private networks
ISO/IEC 18045:2008 Information technology – Security techniques – Methodology for IT security evaluation
ISO/IEC 27000:2009
under development

Information technology – Security techniques – Information security management systems – Overview and
vocabulary

ISO/IEC 27001:2005 Information technology – Security techniques – Information security management systems – Requirements
ISO/IEC 27002:2005 Information technology – Security techniques – Code of practice for information security management
ISO/IEC FCD 27003
under development

nformation technology – Security techniques – Information security management system implementation
guidance

ISO/IEC FCD 27004.2
under development

Information technology – Security techniques – Information security management – Measurement

ISO/IEC 27005:2008 Information technology – Security techniques – Information security risk management
ISO/IEC 27006:2007 Information technology – Security techniques – Requirements for bodies providing audit and certification of

information security management systems
ISO/IEC WD 27007
under development

Information technology – Security techniques – Guidelines for information security management systems
auditing

Table 1: Overview of common ISO/IEC standards for IT/information security

Security Area Sample audit question

Logical security Have all custom-developed applications been written with security in mind?•	
Have custom-developed applications been tested for security flaws?•	
Have the operating systems and commercial applications been updated with the appropriate security patches?•	
Have the security patches been tested before deployment?•	

User identifica-
tion and authen-
tication

Are user names (IDs) unique and linked to real persons?•	
Is there a defined number of consecutive unsuccessful attempts to login?•	

User password
management

Are passwords in place? (e.g. minimum password length, password expiration, password reusability, disabled •	
passwords that are no longer valid)
Are the users informed and asked to follow good security practices in selection and use of passwords? •	
Are all passwords changed regularly, especially the system administrator’s?•	
How difficult are passwords to crack?•	

Virus protection Is anti-virus software installed on all computers?•	
Are personal computers regularly scanned for malware (e.g. computer viruses, logic bombs, spyware/adware)?•	
Is a procedure for automatically updating the anti-virus software in place?•	

Access control Are there access control lists (ACLs) in place for network assets to control who has access to shared data? •	
Are there access control lists in place for applications and information?•	
Are there access control lists in place for mobile computing and teleworking?•	
Are the user access rights reviewed at regular intervals and revised, if necessary?•	
Are there audit logs to record who has accessed data?•	
Are the audit logs reviewed?•	

Data backup
and recovery

How is backup media stored?•	
Who has access to backup media?•	
Is backup media up-to-date?•	
At what frequency are backups taken and tested?•	
Is there a method for performing a restore of the data?•	

Configuration
and application
change man-
agement

How are configurations and code changes documented?•	
Do all system changes go through a formal change control process?•	
Have changes been tested before being placed into production?•	
How are records reviewed?•	
Who conducts the reviews?•	

45www.securityacts.comNo 1 October 2009

Security Area Sample audit question

User support Is user documentation (user manuals, online help, etc) available and up-to-date?•	
Have users been trained in the proper use and security of applications they use?•	
Is there a process for user improvement requests?•	

Disaster recov-
ery

Is there a disaster recovery plan in place?•	
Has a disaster recovery plan been reviewed and approved?•	
Are disaster recovery teams established to support disaster recovery plan?•	
Are recovery plans regularly tested?•	
Is there at least one copy of company’s data and application software stored in a secure, off-site location? •	
Does a hardware maintenance contract exist with a supplier?•	

Information
security policy

Is there a documented security policy in place?•	
Who is the owner of the information security policy?•	
Who is responsible for its review according to a defined review process?•	
Has security policy been communicated to all employees and contractors?•	
Is there a clear-screen policy in place?•	
Is there a clear-desk policy to ensure that employees secure confidential files when they are not working on •	
them?

Security
awareness and
training

Is there security awareness and is an appropriate information security training program in place?•	
Have all copies of software been properly licensed and registered?•	

Physical and
environmental
security

Are systems left logged in while employees are away?•	
Has physical protection against external and environmental threats (e.g. fire, flood, earthquake, explosion, elec-•	
tromagnetic interference) been designed and applied?
Has physical security for offices, rooms and facilities been designed and applied?•	
Are there physical entry controls to protect secure areas and to ensure that only authorised personnel are al-•	
lowed access?
Are there physical protection and guidelines for working in secure areas?•	
Has equipment been protected from power failures and failures caused by other utilities?•	
Has equipment been correctly maintained to ensure availability and integrity?•	
Are network servers physically secure in a separate area?•	

Table 2: Sample generic information security audit checklist

Name of Tool URL Description

Nessus® www.nessus.org Remote network vulnerability scanner
SAINT® www.saintcorporation.com Network vulnerability scanner
IBM® Internet Scanner www.iss.net Network vulnerability scanner
Retina® www.eeye.com Network security scanner
QualysGuard® Suite www.qualys.com Tools for vulnerability management, policy compliance, PCI (Payment Card

Industry) compliance, and web application scanning
CORE IMPACT Pro www.coresecurity.com Automated penetration security testing software
SATAN www.porcupine.org/satan Security administrator tool for analyzing networks
Nmap (Network Mapper) nmap.org Free and open source utility for network exploration and security auditing (port

scanner)
John the Ripper www.openwall.com/john Multi-platform password hash cracker for detection of weak passwords
Crack ftp.cerias.purdue.edu/pub/

tools/unix/pwdutils/crack/
Password cracker

Tiger www.nongnu.org/tiger Unix security audit and intrusion detection tool
COPS (Computer Oracle
and Password System)

www.nongnu.org/tiger
ftp.cerias.purdue.edu/pub/
tools/unix/scanners/cops/

System monitoring tool

Foundstone www.foundstone.com Many free tools and resources: forensic tools, Foundstone SASS (Software
Application Security Services) tools, intrusion detection tools, scanning tools,
stress testing tools, etc

Table 3: Overview of commonly used information security audit tools

46 www.securityacts.com No 1 October 2009

Nadica Hrgarek holds a B.Sc. in information systems and a Master of Sci-
ence in information science from the University of Zagreb, Croatia.
Since March 2007 she has been a member of the RA/QA department at
MED-EL Elektromedizinische Geräte GmbH (www.medel.com), a hearing
implant company located in Innsbruck, Austria. Nadica is currently working
as a Senior QA Specialist – Quality Improvement. Her responsibility covers
all aspects of quality improvements ranging from coordination of corrective
and preventive actions, non-product software validation support, conducting
training, internal and supplier audits, etc.
Nadica is a certified ISTQB tester (full advanced level), ISO 9000 internal and
lead auditor and has conducted more than 20 internal, product, process and
supplier audits.
She is co-founder and Head of the Advisory Board of the Croatian Testing
Board (CTB), which was founded in 2008. She is also a member of the Ger-
man Association for Software Quality and Training (ASQF).

Basic information security terms

An asset is anything that has value to the organization. [ISO/IEC 13335-1:2004] Assets are subject to many kinds of threats.

A threat is a potential cause of an unwanted incident, which may result in harm to a system or organization. [ISO/IEC 27001:2005] An
example of a threat could be the accidental deletion of system data.

Vulnerability is defined as a weakness of an asset or group of assets that can be exploited by one or more threats. [After ISO/IEC
27001:2005] Vulnerabilities can be found in software, information systems, network protocols and devices, etc. If vulnerability is
not managed, it will allow a threat to materialize. Examples of vulnerability are: unpatched software, weak passwords, lack of access
control, no firewall installed, insufficient security training, unlocked doors and windows, shared accounts, programming input validation
errors, etc.

A risk is the potential that a given threat will exploit vulnerabilities to cause loss or damage to an asset or group of information assets
and thereby cause harm to the organization. It is measured in terms of a combination of the probability of an event and the severity of
its consequences. [After ISO/IEC 13335-1:2004]

Information is an asset which, like other important business assets, has value to an organization and consequently needs to be suitably
protected. [ISO/IEC 27002:2005] Information can be in various forms: printed or written on paper, stored electronically, transmitted by
post or e-mail, shown on corporate videos, spoken in conversation or exists as knowledge acquired by individuals.

Information security is preservation of confidentiality, integrity and availability of information; in addition, other properties, such as
authenticity, accountability, non-repudiation, and reliability can also be involved. [ISO 27002:2005]

Industrial espionage is unauthorized collection of confidential, classified or proprietary documents.

47www.securityacts.comNo 1 October 2009

Masthead
EDITOR

Díaz & Hilterscheid
Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin, Germany

Phone: +49 (0)30 74 76 28-0		 Fax: +49 (0)30 74 76 28-99	 E-Mail: info@diazhilterscheid.de

Díaz & Hilterscheid is a member of “Verband der Zeitschriftenverleger Berlin-Brandenburg e.V.”

EDITORIAL						 EDITORIAL BOARD
José Díaz					 Prof. Dr. Sachar Paulus
						 Manu Cohen-Yashar		

CHIEF ADVISOR					 Markus Schumacher
Stephan Goericke				 Aaron Cohen

LAYOUT & DESIGN
Katrin Schülke

WEBSITE
www.securityacts.com

ARTICLES & AUTHORS
editorial@securityacts.com

ADVERTISEMENTS
sales@securityacts.com

PRICE
online version: 	 free of charge

In all publications Díaz & Hilterscheid Unternehmensberatung GmbH makes every effort to respect the copyright of graphics and texts used, to
make use of its own graphics and texts and to utilise public domain graphics and texts.

All brands and trademarks mentioned, where applicable, registered by third-parties are subject without restriction to the provisions of ruling la-
belling legislation and the rights of ownership of the registered owners. The mere mention of a trademark in no way allows the conclusion to be
drawn that it is not protected by the rights of third parties.

The copyright for published material created by Díaz & Hilterscheid Unternehmensberatung GmbH remains the author’s property. The dupli-
cation or use of such graphics or texts in other electronic or printed media is not permitted without the express consent of Díaz & Hilterscheid
Unternehmensberatung GmbH.

The opinions expressed within the articles and contents herein do not necessarily express those of the publisher. Only the authors are responsible
for the content of their articles.

No material in this publication may be reproduced in any form without permission. Reprints of individual articles available.

CaseMaker 41

Bitzen 23, 33

Díaz & Hilterscheid GmbH 2, 19, 48

iSQI 11

Kanzlei Hilterscheid 31

Index Of Advertisers

Training with a View

also onsite training worldwide in German,
English, Spanish, French at

http://training.diazhilterscheid.com/
training@diazhilterscheid.com

“A casual lecture style by Mr. Lieblang, and dry, incisive comments in-between. My attention was correspondingly high.
With this preparation the exam was easy.”

Mirko Gossler, T-Systems Multimedia Solutions GmbH

“Thanks for the entertaining introduction to a complex topic and the thorough preparation for the certification.
Who would have thought that ravens and cockroaches can be so important in software testing”

Gerlinde Suling, Siemens AG

Ku
rfü

rs
te

nd
am

m
, B

er
lin

 ©
 K

at
rin

 S
ch

ül
ke

09.11.09-11.11.09 Certified Tester Foundation Level Berlin
30.11.09-04.12.09 Certified Tester Advanced Level - TESTMANAGER Berlin
02.12.09-04.12.09 ISSECO® - Certified Professional for Secure Software Engineering Frankfurt a. M./Neu Isenburg
07.12.09-10.12.09 Certified Tester Foundation Level Frankfurt am Main
14.12.09-17.12.09 Certified Tester Foundation Level Düsseldorf/Köln
14.12.09-18.12.09 Certified Tester Advanced Level - TEST ANALYST Berlin
05.01.10-07.01.10 Certified Tester Foundation Level - Kompaktkurs Berlin
18.01.10-20.01.10 Certified Tester Foundation Level - Kompaktkurs Stuttgart
18.01.10-22.01.10 Certified Tester Advanced Level - TEST ANALYST Frankfurt am Mein
25.01.10-29.01.10 Certified Tester Advanced Level - TESTMANAGER Berlin
08.02.10-10.02.10 Certified Tester Foundation Level - Kompaktkurs Berlin
15.02.10-19.02.10 Certified Tester - TECHNICAL TEST ANALYST Berlin
22.02.10-25.02.10 Certified Tester Foundation Level Frankfurt am Man
22.02.10-26.02.10 Certified Tester Advanced Level - TESTMANAGER Düsseldorf
24.02.10-26.02.10 Certified Professional for Requirements Engineering - Foundation Level Berlin
01.03.10-03.03.10 ISSECO® - Certified Professional for Secure Software Engineering Berlin
08.03.10-10.03.10 Certified Tester Foundation Level - Kompaktkurs München
15.03.10-17.03.10 Certified Tester Foundation Level - Kompaktkurs Berlin
15.03.10-19.03.10 Certified Tester Advanced Level - TEST ANALYST Düsseldorf
22.03.10-26.03.10 Certified Tester Advanced Level - TESTMANAGER Berlin
12.04.10-15.04.10 Certified Tester Foundation Level Berlin
19.04.10-21.04.10 Certified Tester Foundation Level - Kompaktkurs Hamburg
21.04.10-23.04.10 Certified Professional for Requirements Engineering - Foundation Level Berlin
28.04.10-30.04.10 Certified Tester Foundation Level - Kompaktkurs Düsseldorf
03.05.10-07.05.10 Certified Tester Advanced Level - TESTMANAGER Frankfurt am Main
03.05.10-07.05.10 Certified Tester - TECHNICAL TEST ANALYST Berlin
10.05.10-12.05.10 Certified Tester Foundation Level - Kompaktkurs Berlin
17.05.10-21.05.10 Certified Tester Advanced Level - TEST ANALYST Berlin
07.06.10-09.06.10 Certified Tester Foundation Level - Kompaktkurs Hannover
09.06.10-11.06.10 Certified Professional for Requirements Engineering - Foundation Level Berlin
14.06.10-18.06.10 Certified Tester Advanced Level - TESTMANAGER Berlin
21.06.10-24.06.10 Certified Tester Foundation Level Dresden

- subject to modifications -

